Inglewood
Active Transportation & Safe Routes to School Plan
Adopted May 17, 2022
ACKNOWLEDGMENTS

City of Inglewood

CITY COUNCIL
Mayor James T. Butts
George Dotson, District No. 1
Alex Padilla, District No. 2
Eloy Morales, District No. 3
Dionne Faulk, District No. 4

CITY STAFF
Artie Fields, City Manager
Christopher Jackson, Director of Economic and Community Development Department
Louis Atwell, Director of Public Works Department
Mark Frontierotta, Chief of Police
Sabrina Barnes, Director of Parks, Recreation and Library Services
Mindy Wilcox, AICP, Planning Manager
Peter Puglese, Traffic Engineer
Bernard McCrumby, Senior Planner

TECHNICAL ADVISORY COMMITTEE
Dr. Thelma Melendez de Santa Ana, IUSD State Administrator
Dr. Jacqueline Sanderlin, Executive Director of School and Community Relations
Dr. D’Artagnan Scorza, Executive Director, Social Justice Learning Institute
Marie Gabon, Community Liaison Public Health Nurse, Los Angeles County Public Health-PLACE Program

Consultant Staff

TRANSPO GROUP
Ryan Snyder
Melody Wu
Cameron Duncan
Brent Turley
Jacqueline Torres
Bob Sisco
Polina Butrina
Madeleine Prak

KATHERINE PADILLA ASSOCIATES
Katherine Padilla Otanez
Thelma Herrera

KWS CONSULTING
Kara Sergile

LOS ANGELES COUNTY BICYCLE COALITION
Eric Bruins
Brian Moller
Colin Bogart
Melinda Amato
Taniya Butler
Erik Jansen
### INGLEWOOD CTC ACTIVE TRANSPORTATION PLAN GUIDELINES FOR DISADVANTAGED COMMUNITIES (2019 GUIDELINES)

<table>
<thead>
<tr>
<th>REQUIREMENT</th>
<th>CHAPTER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mode Share</strong></td>
<td>5</td>
</tr>
<tr>
<td>The estimated number of existing bicycle trips and pedestrian trips in the plan area, both in absolute numbers and as a percentage of all trips, and the estimated increase in the number of bicycle trips and pedestrian trips resulting from implementation of the plan.</td>
<td></td>
</tr>
<tr>
<td><strong>Description of Land Use/Destinations</strong></td>
<td>5</td>
</tr>
<tr>
<td>A map and description of existing and proposed land use and settlement patterns which must include, but not be limited to, locations of residential neighborhoods, schools, shopping centers, public buildings, major employment centers, major transit hubs, and other destinations. Major transit hubs must include, but are not limited to, rail and transit terminals, and ferry docks and landings.</td>
<td></td>
</tr>
<tr>
<td><strong>Bicycle Facilities</strong></td>
<td>5, 6</td>
</tr>
<tr>
<td>A map and description of existing and proposed bicycle transportation facilities, including those at major transit hubs.</td>
<td></td>
</tr>
<tr>
<td><strong>Bicycle Parking</strong></td>
<td>5, 6</td>
</tr>
<tr>
<td>A map and description of existing and proposed end-of-trip bicycle parking facilities. Include a description of existing and proposed policies related to bicycle parking in public locations, private parking garages and parking lots and in new commercial and residential developments. Also include a map and description of existing and proposed bicycle transport and parking facilities for connections with and use of other transportation modes. These must include, but not be limited to, bicycle parking facilities at transit stops, rail and transit terminals, ferry docks and landings, park and ride lots, and provisions for transporting bicyclists and bicycles on transit or rail vehicles or ferry vessels.</td>
<td></td>
</tr>
<tr>
<td><strong>Wayfinding</strong></td>
<td>5, A</td>
</tr>
<tr>
<td>A description of existing and proposed signage providing wayfinding along bicycle and pedestrian networks to designated destinations.</td>
<td></td>
</tr>
<tr>
<td><strong>Non-Infrastructure</strong></td>
<td>10</td>
</tr>
<tr>
<td>A description of existing and proposed bicycle and pedestrian safety, education, and encouragement, enforcement, and evaluation programs conducted in the area included within the plan. Include efforts by the law enforcement agency having primary traffic law enforcement responsibility in the area to enforce provisions of the law impacting bicycle and pedestrian safety, and the resulting effect on collisions involving bicyclists and pedestrians.</td>
<td></td>
</tr>
<tr>
<td><strong>Collision Analysis</strong></td>
<td>5</td>
</tr>
<tr>
<td>The number and location of collisions, serious injuries, and fatalities suffered by bicyclists and pedestrians in the plan area, both in absolute numbers and as a percentage of all collisions and injuries, and a goal for collision, serious injury, and fatality reduction after implementation of the plan.</td>
<td></td>
</tr>
<tr>
<td><strong>Equity Analysis</strong></td>
<td>12</td>
</tr>
<tr>
<td>Identify census tracts that are considered to be disadvantaged or low-income and identify bicycle and pedestrian needs.</td>
<td></td>
</tr>
<tr>
<td><strong>Community Engagement</strong></td>
<td>2</td>
</tr>
<tr>
<td>A description of the extent of community involvement in development of the plan, including disadvantaged and underserved communities.</td>
<td></td>
</tr>
<tr>
<td><strong>Coordination</strong></td>
<td>3</td>
</tr>
<tr>
<td>A description of how the active transportation plan has been coordinated with neighboring jurisdictions, including school districts within the plan area, and is consistent with other local or regional transportation, air quality, or energy conservation plans, including, but not limited to, general plans and a Sustainable Community Strategy in a Regional Transportation Plan.</td>
<td></td>
</tr>
<tr>
<td><strong>Prioritization</strong></td>
<td>12</td>
</tr>
<tr>
<td>A description of the projects and programs proposed in the plan and a listing of their priorities for implementation, including the methodology for project prioritization and a proposed timeline for implementation.</td>
<td></td>
</tr>
<tr>
<td><strong>Funding</strong></td>
<td>11</td>
</tr>
<tr>
<td>A description of future financial needs for projects and programs that improve safety and convenience for bicyclists and pedestrians in the plan area. Include anticipated cost, revenue sources and potential grant funding for bicycle and pedestrian uses.</td>
<td></td>
</tr>
<tr>
<td><strong>Implementation</strong></td>
<td>12</td>
</tr>
<tr>
<td>A description of steps necessary to implement the plan and the reporting process that will be used to keep the adopting agency and community informed of the progress being made in implementing the plan.</td>
<td></td>
</tr>
<tr>
<td><strong>Maintenance</strong></td>
<td>4</td>
</tr>
<tr>
<td>A description of the policies and procedures for maintaining existing and proposed bicycle and pedestrian facilities, including, but not limited to, the maintenance of smooth pavement, ADA level surfaces, freedom from encroaching vegetation, maintenance of traffic control devices including striping and other pavement markings, and lighting.</td>
<td></td>
</tr>
<tr>
<td><strong>Resolution</strong></td>
<td>TBD</td>
</tr>
<tr>
<td>A resolution showing adoption of the plan by the city, county, or district. If the active transportation plan was prepared by a county transportation commission, regional transportation planning agency, MPO, school district, or transit district, the plan should indicate the support via resolution of the city(s) or county(s) in which the proposed facilities would be located.</td>
<td></td>
</tr>
</tbody>
</table>
Contents

Chapter 1. Introduction 7

Chapter 2. Community Outreach 10

Chapter 3. Planning Context 22
  Plans of Neighboring Cities 33
  Regional Plans 37

Chapter 4. Goals, Policies & Strategies 42

Chapter 5. Bicycling & Walking in Inglewood Today 50
  Inglewood Today 52
    A Mix of Land Uses 52
    Existing Bicycle and Pedestrian Counts 55
    Existing Bicycle and Pedestrian Collisions 57
    Commute Modes & Patterns 59
    Existing Programs 61
    Wayfinding Signage 61
    Past Expenditures (Bike/Ped Facilities) 62
    Maintenance Policies 64
  Bicycling in Inglewood Today 65
    Existing Bikeways in Inglewood 66
    Existing Bikeway Network 67
    Existing Links to Other Transport Modes & End-of-Trip Amenities 68
    Existing Links to Other Transport Modes 69
  Walking in Inglewood Today 70

Chapter 6. Proposed Bicycle Facilities Plan 72
  Types of Bicyclists 74
  Proposed Bikeways 75
  Proposed Bicycle Parking 95
  Proposed Parking Requirements 97
  Proposed Links to Public Transit and Other Transport Modes 98
  Proposed End-of-Trip Amenities 99
  Wayfinding Signage 101

Chapter 7. Proposed Pedestrian Facilities Plan 103
  Downtown Walk Audit 104
  Proposed Pedestrian Improvements 109
  Community Priorities 109
  Engineering Recommendations 109
  Proposed Pedestrian Improvements 111
  Special Pedestrian Project 138

Chapter 8. Americans with Disabilities (ADA) Transition Framework Plan 140
  About ADA Transition Plan 142
  Guidelines on ADA Accessibility 143
  Inventory Physical Barriers 144
  Curb Ramps 149
  Accessible Pedestrian Signals 150
  Recommendations for Removal 150
  Cost Estimates 151
  Schedule for Repairs 151
The City of Inglewood has developed an **Active Transportation Plan and Safe Routes to School Plan (ATP/SRTS)** that incorporates bicycling, walking, safe routes to school, and Americans with Disabilities Act (ADA) considerations.

The ATP/SRTS establishes a vision for the City and will guide the community toward a future where active transportation is a viable option for all ages who live, work, and play within its borders. The Plan also allows access to increasing public transit connectivity to the rest of the Los Angeles region and it will create a network that will meet the needs for those who are transit dependent, those looking for alternatives, and recreational users. Inglewood has already demonstrated a commitment toward fewer automobiles and all of the economic benefits that provides. Along with the addition of the three Inglewood stations of Metro’s Crenshaw-LAX rail line, this Plan will give the community an opportunity to accelerate that trend.

A California State Department of Transportation (Caltrans) grant, in partnership with the Southern California Association of Governments (SCAG) was awarded to the City of Inglewood to create a citywide ATP/SRTS Plan.

The purpose of this ATP/SRTS is to create a Complete Streets update to the City of Inglewood General Plan. This Plan is comprised of the following four main components: (1) Bicycle Facilities Plan, (2) Pedestrian Facilities Plan, (3) SRTS Plan, and an (4) ADA Transition Framework Plan. These components are explained further on the following page.

**“ACTIVE TRANSPORTATION”**

refers to non-motorized, human-powered transportation—primarily walking and bicycling—but may also include skateboarding, wheelchairs or any non-motorized means of transportation.

The City of Inglewood has embarked on a comprehensive, citywide effort that encourages increased utilization of active modes of transportation as a viable option for all ages who live, work, and shop within the City.
CHAPTER 1

BICYCLE FACILITIES PLAN

The Bicycle Facilities Plan includes results from the first Community Workshop on January 21, 2016 that provided a platform for residents and local stakeholders to share their issues and concerns related to bicycling in Inglewood. Stakeholders identified safety concerns, bikeway network gaps, potential bikeways, and additional linkages to the existing network. The Plan seeks to create a regionally integrated and well-connected network of bikeways, bicycle facilities, end-of-trip amenities, and links to other transportation modes.

PEDESTRIAN FACILITIES PLAN

The Pedestrian Facilities Plan identifies opportunities and constraints for the enhancement of comfort, safety, and connectivity in the City’s mobility network. The Pedestrian Facilities Plan prepares recommendations for the top 27 locations as identified at the Downtown Walk Audit on May 7, 2016 and by the Technical Advisory Committee (TAC).

The plan also provides recommendations for location-specific improvements and an implementation program.

SAFE ROUTES TO SCHOOL (SRTS) PLAN

The SRTS Plan includes results of public workshops at 17 schools held between 2016-2017 where local stakeholders identified safety issues and other barriers that discourage students from walking or bicycling to the schools in Inglewood. It also includes a plan for each school to make engineering improvements to the most important locations as identified by stakeholders. These improvements range from intersection modification to new sidewalks or bikeways. This Plan details work completed thus far and future steps.

AMERICANS WITH DISABILITIES ACT (ADA) TRANSITION FRAMEWORK PLAN

A required ADA Transition Plan shall be prepared by the City of Inglewood to identify barriers to travel for people with disabilities. It shall entail an inventory of existing ADA-compliant facilities and locations that need improvements. The ADA Plan shall be a stand-alone document and build upon this ATP/SRTS.

This Plan will develop a framework for the City’s ADA Transition Plan.

By preparing these various plans the City is better positioned to apply for funding to implement the necessary capital improvements.
THE ATP/SRTS PLAN WILL INCLUDE THE FOLLOWING CHAPTERS:

• Chapter 2 – Community Outreach describes the community input from the community-wide workshops and outreach regarding the challenges and opportunities to bicycling and walking in Inglewood.

• Chapter 3 – Planning Context frames the ATP & SRTS Plan within the context of existing plans in the City of Inglewood, neighboring city plans, and regional plans.

• Chapter 4 – Goals, Policies & Strategies guides the implementation of the ATP & SRTS Plan by spelling out the long-term vision of the Plan.

• Chapter 5 – Bicycling and Walking in Inglewood Today analyzes Inglewood’s existing bicycle and pedestrian facilities, amenities, as well as safety and education programs. This chapter also includes a five-year pedestrian and bicycle crash analysis and existing transportation mode split in the City.

• Chapter 6 – Proposed Bicycle Facilities Plan updates the City’s proposed network of bikeways, bicycle parking, links to other transportation modes, and amenities. The proposed facilities provide connectivity throughout Inglewood, as well as to existing and planned bikeways in the surrounding cities.

• Chapter 7 – Proposed Pedestrian Facilities Plan prepares pedestrian improvements for the top 27 locations throughout the City.

• Chapter 8 – Safe Routes to School Plan includes “mini plans” with proposed safe routes to school improvements for each of Inglewood’s 17 schools.

• Chapter 9 - Americans with Disabilities Act (ADA) Transition Framework Plan consists of recommendations to remove ADA barriers at each of the locations surveyed under the Pedestrian Facilities Plan and Safe Routes to School Plans. It includes a framework for the City to follow and fill in whenever it conducts an inventor.

• Chapter 10 – Programs & Evaluation recommends a number of bicycle & pedestrian education, encouragement, and enforcement programs that students, parents, schools, businesses, local law enforcement, and the City should promote. This Chapter also provides an evaluation method to determine whether the City’s goals and policies are being met.

• Chapter 11 – Funding identifies federal, state and local funding sources for the recommended projects.

• Chapter 12 – Prioritization & Implementation considers likely funding sources, cost estimates, analyzes priorities and presents an implementation schedule.

• Appendix A – Design Toolbox provides a toolbox of pedestrian, bicycle, and ADA improvements. The toolbox will provide guidance as to how to design each improvement and where they are appropriate.
CHAPTER 2
The goal of the public outreach process is to create an interactive and inclusive community engagement process. A Technical Advisory Committee (TAC) was formed to represent the City of Inglewood and provide technical guidance throughout the project. TAC members ensured that the project was on track and representative of the needs and understandings of the community.

With community involvement and a well thought-out process, the City aspires to create a model for inclusiveness that ensures equity is integral to the planning process.

COMMUNITY OUTREACH

The goal of the public outreach process is to create an interactive and inclusive community engagement process. A Technical Advisory Committee (TAC) was formed to represent the City of Inglewood and provide technical guidance throughout the project. TAC members ensured that the project was on track and representative of the needs and understandings of the community.

Members included the following City Departments and community partners:

- Public Works Department
- Economic and Community Development Department
- Police Department
- Parks, Recreation and Library Services Department
- Social Justice Learning Institute
- Inglewood Unified School District
COMMUNITY WORKSHOPS

Community Workshops were conducted to solicit input and feedback from the community about active transportation opportunities in Inglewood.

COMMUNITY WORKSHOP
JANUARY 21, 2016

This Community Workshop presented the purpose of the Plan and the planning process, and included a mapping exercise where people marked the locations where they would like to see bikeways, bicycle parking, pedestrian improvement and other safety concerns related to walking and bicycling in Inglewood. Over 50 people participated.
A walk audit was conducted in the downtown area to educate local stakeholders about pedestrian issues and to engage them in thinking about measures that might be taken to improve walking conditions. Workshop attendees discussed the quality of the existing pedestrian environment during the walking tour, then mapped out existing concerns and potential opportunities that would enhance the walking experience in the downtown area.

The walk audit achieved a series of quantifiable indicators of how the street encourages or discourages pedestrian uses, the viability of commercial streets, and its impact on the surrounding neighborhood. Input from the walk audit was used to prioritize the 27 pedestrian improvement locations found in Chapter 6 Proposed Bicycle Facilities Plan.
COMMUNITY BIKE RIDES

The City of Inglewood hosted four bicycle rides in partnership with the Los Angeles County Bicycle Coalition (LACBC). The bicycle rides created excitement among the participants and allowed them to explore their community through a different lens. LACBC certified instructors, City staff, District representatives, and Inglewood Police Department attended the bike rides alongside community stakeholders. The rides were open to the public and part of the outreach effort to encourage people to become more active on a regular basis.

DISTRICT 1 COMMUNITY BIKE RIDE & NEIGHBORHOOD SOCIAL
COUNCILMAN GEORGE W. DOTSON
APRIL 29, 2017

“It was a very safe and comfortable ride as there were not many cars on the streets and the streets were quite wide. The ride was on residential streets. Everyone who attended enjoyed the bike ride and mentioned wanting to ride a bike more often and wanting to attend future rides. The Councilmember’s office had snacks, water, and a BBQ set up in the park for after the ride which riders really appreciated.”

-LACBC STAFF

DISTRICT 2 COMMUNITY BIKE RIDE & NEIGHBORHOOD SOCIAL
COUNCILMAN ALEX PADILLA
MAY 6, 2017

“The District 2 Community Bike Ride was a success. There were about 30 community members of all ages on the ride. Fortunately, City staff brought several bikes to the ride for people to borrow. All of those bikes were borrowed and we ended up with more people wanting to ride than bikes. After the ride there were tables and chairs set up with food, gatorade, and water. Councilmember Padilla and his wife spoke to many residents in attendance and also joined the ride.”

-LACBC STAFF
Our ride had about 30 community members, many of them children that also received free bicycle helmets courtesy of the Local PD. The ride led us through the third district with local police officers along mostly residential areas from a nearby park. There were two families that had attended a previous ride and were interested in more monthly rides with the city. The children had lots of fun too and all community members were treated to lunch by their Councilmember. Because the ride had about 40% children, it was a much slower-paced ride. 

-LACBC STAFF

Our ride had about 15 community members, some of them children as well. All of them came with their own helmets and had bikes that were ready to ride. Local PD assisted with traffic on the route that took us through mostly residential but some small business district streets. This route was a bit more difficult for folks since there was some streets that took us uphill. This did cause us to take a short break for folks to catch their breath but all continued on the ride safely. All riders were treated to snacks before and following the ride.

-LACBC STAFF
LACBC staff conducted three “Operation Firefly” events where they organized “Team Firefly” volunteers to distribute free bicycle lights to people seen riding on the streets of Inglewood at night without lights. LACBC also handed out information on the rules of the road and safe riding habits. These events were used as an opportunity to conduct a brief survey about people’s riding habits and needs, and remind bicyclists of the importance of using lights and riding safely at night.

The locations for Operation Firefly were undisclosed to the public, but were selected based on where night-time bicycle ridership was expected to be high.

“On Thursday January 14, Operation Firefly was in Inglewood for the first time ever at Manchester & Grevillea. We were there thanks to the sponsorship from the City of Inglewood. We met some really nice people on bikes and promised them that we’ll be back in Inglewood again soon.”

-TEAM FIREFLY

“On Wednesday February 3, Operation Firefly returned to Inglewood for the second time in the season. Our Team Firefly volunteers greeted passing bicyclists, most of them riding on the sidewalk, amidst the rumble of heavy traffic. We met a few riders in a hurry, but most were happy to stop, answer our survey questions, and listen to the volunteers explain the importance of using the lights.”

-TEAM FIREFLY
BICYCLE SAFETY CLASSES

LACBC hosted a three-hour bicycle safety class that taught the techniques of riding in the streets, using lights, and other safety behaviors.

MORNINGSIDE HIGH SCHOOL
MAY 11, 2017
A workshop for 20 students was held. It went well, the students were engaged and enthusiastic. All of the students received a helmet.

INGLEWOOD CITY HALL
MAY 11, 2017
Unfortunately, no one showed up for the evening class at Inglewood City Hall. LACBC helped to promote the class and flyers were handed out at both of the Inglewood bicycle rides preceding May 11.

SOCIAL JUSTICE LEARNING INSTITUTE
MAY 20, 2017
One person attended the Saturday morning class on May 20.

LESSONS LEARNED

Based on the turnout for the bike safety classes, it may have been better to schedule the classes after all four community bike rides were completed. This would have allowed for enough promotion at the rides and for the participants to tell their friends, neighbors, or family members.
WEBSITE AND MULTIMEDIA OUTREACH

IMAGINEINGLEWOOD.COM
ImagineInglewood.com provided announcements of upcoming workshops, community events and relevant planning documents. The website included an interactive map that allowed stakeholders to mark places where they would like bikeways, bike parking, improved pedestrian crossings, and highlight any safety concerns.

SAFE ROUTES TO SCHOOL PROMOTIONAL COLLATERAL

SRTS WORKSHOP FLYERS
Flyers in both English and Spanish were produced and distributed to each school to notify community stakeholders of the upcoming SRTS workshops.

SRTS WALK TO SCHOOL FLYERS
Flyers in both English and Spanish were produced and distributed to each participating school to encourage participation in 2017 International Walk to School Day.
INTERNATIONAL WALK TO SCHOOL DAY

2016 HIGHLIGHTS

8 SCHOOLS PARTICIPATED
1ST WALK TO SCHOOL DAY EVENT IN INGLEWOOD

KICKING OFF THE FIRST-EVER INTERNATIONAL WALK TO SCHOOL DAY IN INGLEWOOD

International Walk to School Day, held in October each year, joins children and adults from around the world to celebrate walking and bicycling to school. Support from the City, Inglewood Unified School District, participating schools, crossing guards, Inglewood Police Department, parents, and many other partners made this first-ever event in Inglewood a huge success.
INTERNATIONAL WALK TO SCHOOL DAY

2017 HIGHLIGHTS

14 SCHOOLS PARTICIPATED
2ND LARGEST EVENT IN L.A. COUNTY

After all the excitement gained from the 2016 event, the International Walk to School Day 2017 event was themed “Attend and Achieve”. The event was part of the City’s efforts to encourage more walking and bicycling to school, and promote the importance of school attendance. Because students who attend school regularly have been shown to achieve at higher levels than students who do not.
SRTE PEDESTRIAN & BICYCLE SAFETY WORKSHOPS

After the excitement from International Walk-to-School Day, Pedestrian and Bicycle Safety workshops were offered to the elementary school sites. Per directive from the Inglewood Unified School District, educational workshops were organized and delivered to 8 out of the 10 elementary schools. The workshops were designed and targeted to third graders. During the month of December 2017, educational programming was delivered to close to 860 third grade students combined. The programming was very well received.
This following sections discuss adopted plans and policies relevant to walking and bicycling in the City of Inglewood. This Plan coincides with planning efforts conducted regionally and locally. This Plan compliments and expands upon these previous efforts to create a well-connected network for pedestrians and bicyclists throughout the City.

**THESE PLANS AND POLICIES INCLUDE:**

<table>
<thead>
<tr>
<th>CITY OF INGLEWOOD PLANS</th>
<th>NEIGHBORING JURISDICTIONS PLANS</th>
<th>REGIONAL PLANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• General Plan, Circulation Element (1992)</td>
<td>• South Bay Bicycle Master Plan (2011)</td>
<td>• Metro Active Transportation Strategic Plan (2016)</td>
</tr>
<tr>
<td>• General Plan, Land Use Element (Amended 2009)</td>
<td>• County of Los Angeles Bicycle Master Plan (BMP) (2012)</td>
<td>• SCAG Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS) (2016)</td>
</tr>
<tr>
<td>• City of Inglewood Municipal Code</td>
<td>• City of Los Angeles Mobility Plan 2035 (2016)</td>
<td></td>
</tr>
<tr>
<td>• New Downtown Inglewood and Fairview Heights Form Based Concept Plans and TOD Zoning (2016)</td>
<td>• Crenshaw Boulevard Streetscape Plan (2015)</td>
<td></td>
</tr>
<tr>
<td>• Hollywood Park Specific Plan (2009)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• City of Inglewood Pedestrian Safety Assessment (2013)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• City of Inglewood Energy and Climate Action Plan (2013)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CITY OF INGLEWOOD PLANS

CITY OF INGLEWOOD GENERAL PLAN, CIRCULATION ELEMENT (1992)

The City of Inglewood ATP/SRTS Plan will update the Circulation Element of the General Plan. The Circulation Element addresses the City’s goals and objectives to upgrade and expand its local streets, arterial and regional highways, truck routes, bicycle routes, public transportation, and rail service. The purpose of the Circulation Element is to ensure that adequate access is or will be provided for current and future development.

The Circulation Element identifies several bicycle routes through Inglewood, though the Bicycle Routes section is outdated and not entirely consistent with recent and future development. A majority of these routes avoid the most heavily trafficked arterial streets, narrow streets, steep grades, difficult topography, and busy unsignalized intersections. Fewer routes have been designated on the northern end due to its hilly topography.

Building upon this section of the General Plan, this Plan will improve and expand upon the existing bicycle network, promote the ease of use and safety for pedestrians and bicyclists, and encourage the development and implementation of a variety of design measures to increase walking and bicycling and reduce vehicle trips and miles within the City of Inglewood.

CITY OF INGLEWOOD GENERAL PLAN, LAND USE ELEMENT (AMENDED 2009)

The City of Inglewood’s General Plan Land Use Element was adopted in 1980 and amended in 1986 and 2009. The Land Use Element provides a framework for policies, locations and intensity of land uses and how development and redevelopment should proceed in the future. As noted, the existing General Plan is out of date, but there are objectives defined in the Land Use Element that demonstrate the consistency of with this Plan.

The Land Use Element defines the following Circulation Goals under the Statement of Objectives Chapter:

- Insure that proposed new used can be accommodated by adequate and safe streets
- Promote and support adequate public transportation within the city and the region
- Develop modified traffic systems that will discourage through traffic from utilizing neighborhood streets
- Develop a safe and adequate pedestrian circulation system which is barrier free for the handicapped

Although dated, the Land Use Element also identifies four redevelopment areas within the City that will have a significant impact on future land use. New and continued growth in business, industry and residential uses is projected in these redevelopment areas.
The City of Inglewood Municipal Code provides development standards for the City and thereby a means to implement the City's General Plan. The Municipal Code's overall objectives are to promote the compatibility of land uses, overall safety, and attractiveness of the City through regulating land use, building size, density, setbacks, lot coverage, and parking. Below is a selection of descriptions in the Code that pertain to pedestrian and bicycle accessibility in the City:

<table>
<thead>
<tr>
<th>SECTION 10-151. TRANSPORTATION DEMAND MANAGEMENT REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>NON-RESIDENTIAL DEVELOPMENT</strong></td>
</tr>
<tr>
<td>25,000 SQUARE FEET OR MORE</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>50,000 SQUARE FEET OR MORE</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>100,000 SQUARE FEET OR MORE</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
## SECTION 12-23.6. DOWNTOWN OUTDOOR RESTAURANT, PUBLIC SIDEWALK STANDARDS

<table>
<thead>
<tr>
<th>LOCATION OF OUTDOOR RESTAURANT</th>
<th>SECTION 12-23.6 (8) REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALONG THE STREET</td>
<td>The outdoor restaurant may extend a distance of no more than 6 feet or 50% into the public sidewalk area (whichever is less) as measured from the exterior building wall of the principal restaurant or food service use. The outdoor restaurant must maintain a minimum 5’ walkway area on the sidewalk for pedestrian circulation.</td>
</tr>
<tr>
<td>AT THE STREET CORNER</td>
<td>The outdoor restaurant must maintain a minimum 10’ setback from the street</td>
</tr>
<tr>
<td>ADJACENT TO ALLEY OR DRIVEWAY</td>
<td>The outdoor restaurant must maintain a 5’ setback from alley or driveway</td>
</tr>
</tbody>
</table>

## OTHER STANDARDS

<table>
<thead>
<tr>
<th>SECTION/TITLE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
</table>
| SECTION 3-30: CROSSWALK INSTALLATION, REMOVAL, AND ENHANCEMENT POLICY SECTION | Other than crosswalks at intersections, no crosswalk shall be established in any block which is less than 200 feet in length. Elsewhere not more than one additional crosswalk in any one block and such crosswalk shall be located as nearly as practicable in midblock.  

**NOTE:** The City should consider revising this standard to establish crosswalks where there is a need for a pedestrian crossing and there is no hazard that has been determined to establishing that crosswalk. |
| SECTION 3-31. JAY WALKING PROHIBITED | It shall be unlawful for any pedestrian to cross a roadway in any business district other than within a marked crosswalk.  

**NOTE:** The City should consider revising this standard to allow pedestrians to cross midblock locations in any business district without crosswalks, but to yield at the right-of-way to motorists. |
NEW DOWNTOWN INGLEWOOD AND FAIRVIEW HEIGHTS TRANSIT ORIENTED DEVELOPMENT (TOD) PLAN AND DESIGN GUIDELINES (2016)

The purpose of this Downtown and Fairview Heights TOD Plan and Design Guidelines is to enhance access to and from the Metro Crenshaw/LAX Line for residents, businesses, and regional transit riders. This guiding document will be applied to any applicants submitting new construction or rehabilitation proposals within the area.

The Design Guidelines in this plan, which include the zoning regulations and development standards, for the TOD areas will replace the zones established in Chapter 12 (Planning and Zoning) of the Inglewood Municipal Code and any other applicable ordinances.

The TOD Plan was designed to provide links to many existing Downtown Inglewood and Fairview Heights destinations including the Metro Crenshaw/LAX station, the Florence/West station, the City-owned D-3 site, Market Street, Civic Center, Inglewood High School, the Forum, Edward Vincent Jr. park, churches, various parking structures, and the surrounding neighborhoods.

Specifically, the TOD Plan proposes various pedestrian and bicycle connections throughout the Downtown and Fairview Heights districts. The following table proposes three special types of streets, Primary Pedestrian Promenades, Green Boulevards, and Neighborhood Connectors, to create a network of “Complete Streets”.
### TOD PLAN: PROPOSED BICYCLE ROUTES

<table>
<thead>
<tr>
<th>STREET</th>
<th>FROM</th>
<th>TO</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Brea Ave.</td>
<td>Plan Boundary (n/o Juniper St.)</td>
<td>Spruce Ave.</td>
<td>Green boulevard with protected bike lanes</td>
</tr>
<tr>
<td>Prairie Ave.</td>
<td>Florence Ave.</td>
<td>Prairie Ave.</td>
<td>Green boulevard with protected bike lanes east side of Prairie Ave.</td>
</tr>
<tr>
<td>Florence Ave.</td>
<td>Western Plan Boundary</td>
<td>West Blvd.</td>
<td>Green boulevard with protected bike lanes</td>
</tr>
<tr>
<td>Regent St.</td>
<td>Inglewood Ave.</td>
<td>Fir Ave.</td>
<td>Neighborhood connector with bike route</td>
</tr>
<tr>
<td>Regent St.</td>
<td>Fir Ave.</td>
<td>La Brea Ave.</td>
<td>Neighborhood connector with bike lanes</td>
</tr>
<tr>
<td>Regent St.</td>
<td>La Brea Ave.</td>
<td>Prairie Ave.</td>
<td>Neighborhood connector with bike route</td>
</tr>
<tr>
<td>Manchester Blvd.</td>
<td>Inglewood Ave.</td>
<td>Prairie Ave.</td>
<td>Green boulevard with protected bike lanes</td>
</tr>
<tr>
<td>Market St.</td>
<td>Florence Ave.</td>
<td>Spruce Ave.</td>
<td>Primary pedestrian promenade</td>
</tr>
<tr>
<td>Beach Ave.</td>
<td>Inglewood Ave.</td>
<td>Centinela Ave.</td>
<td>Neighborhood connector without bike lanes</td>
</tr>
<tr>
<td>Locust St.</td>
<td>Florence Ave.</td>
<td>Hillcrest Blvd.</td>
<td>Neighborhood connector with bike lanes</td>
</tr>
<tr>
<td>Queen St.</td>
<td>La Brea Ave.</td>
<td>Locust St.</td>
<td>Primary pedestrian promenade</td>
</tr>
<tr>
<td>Hyde Park Blvd.</td>
<td>Malborough Ave.</td>
<td>West Blvd.</td>
<td>Neighborhood connector without bike lanes</td>
</tr>
<tr>
<td>West Blvd.</td>
<td>4th St.</td>
<td>Florence Ave.</td>
<td>Neighborhood connector with bike lanes</td>
</tr>
<tr>
<td>Redondo Blvd.</td>
<td>Edward St. Vincent Park</td>
<td>West Blvd.</td>
<td>Primary pedestrian promenade</td>
</tr>
</tbody>
</table>

### TOD PLAN: PROPOSED SHARED PEDESTRIAN AND BICYCLE-FRIENDLY

<table>
<thead>
<tr>
<th>STREET</th>
<th>FROM</th>
<th>TO</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gay St.</td>
<td>Alpha St./ Fairview Ave.</td>
<td>Redondo Blvd.</td>
<td>Pedestrian route to Florence/West Metro Station; potential bicycle-friendly street</td>
</tr>
<tr>
<td>Long St.</td>
<td>Fairview Ave.</td>
<td>Redondo Blvd.</td>
<td>Pedestrian route to Florence/West Metro Station; potential bicycle-friendly street</td>
</tr>
<tr>
<td>Park Ave.</td>
<td>Hyde Park Blvd.</td>
<td>Cut-through Edward St. Vincent Park</td>
<td>Pedestrian route to Florence/ West Metro Station</td>
</tr>
<tr>
<td>Edward St. Vincent Park</td>
<td></td>
<td></td>
<td>Shared bicycle/pedestrian path</td>
</tr>
<tr>
<td>Off-street path between Beach Ave. &amp; Cable Pl.</td>
<td>Eucalyptus Ave.</td>
<td>La Brea Ave.</td>
<td>Off-street bicycle/pedestrian path</td>
</tr>
</tbody>
</table>
A **PRIMARY PEDESTRIAN PROMENADE** is defined in the Plan as a street where placemaking and pedestrian movement should be given the highest priority. Streetscapes along the streets will be maintained, and the promenades should be able to be closed to vehicular traffic entirely for events.

Redondo Blvd., for example, is defined as a primary pedestrian promenade.

**GREEN BOULEVARDS** are defined as major arterial streets that establish a sense of entry and place into Downtown Inglewood. Green boulevards provide traffic calming measures, protected bicycle lanes, and sustainable landscaping and streetscape features.

Prairie Ave., for example, is defined as a green boulevard.

**NEIGHBORHOOD CONNECTORS** help to link Downtown, Metro station and the rest of the Complete Streets network. These streets prioritize pedestrians and bicyclists while accommodating low-speed vehicular movement.

The TOD Plan also proposes green alley connections, public plazas, and a pedestrian bridge across Florence Avenue, a public transit and mobility hub, short-term and long-term bicycle parking locations, and enhanced connections from Downtown to the Forum/Hollywood Park. The recommendations in the TOD Plan were considered in the development of improvements found in **Chapter 6 Proposed Bicycle Facilities Plan**, and **Chapter 7 Proposed Pedestrian Facilities Plan**.
HOLLYWOOD PARK SPECIFIC PLAN (2009)

The Hollywood Park project area is located two miles east of the Los Angeles International Airport (LAX) and several blocks southeast of downtown Inglewood. The Plan proposed a large mixed-use development with residential units, retail, office space, a relocated casino, a hotel, and 26 acres of park space.

Earlier in 2017, the City of Inglewood approved the development of an 80,000-seat National Football League (NFL) stadium for the Los Angeles Rams and a 6,000-seat performance venue. The Hollywood Park Specific Plan was thus repackaged into the City of Champions Revitalization Project. The former Hollywood Park project area intended to replace the Hollywood Park Racetrack and Casino on Prairie Avenue between Arbor Vitae Street and Century Boulevard. Originally 238-acres, the newer 298-acre Revitalization Plan adds the area between Pincay Drive and Arbor Vitae Street to enable room for the stadium, parking lots, and expansion of retail and office space.

The Hollywood Park Specific Plan (2009) puts emphasis on pedestrian priority, compact mixed-use development, a public park system, a “main street” retail/entertainment center and vibrant street life that encourages walking, bicycling and connections to transit.

The Plan identifies the following bicycle and pedestrian circulation improvements for the Hollywood Park project along Century Blvd. and Prairie Ave.: 

\[\text{CENTURY BLVD. & PRAIRIE AVE. CROSS SECTIONS}\]

<table>
<thead>
<tr>
<th>STREET</th>
<th>FROM</th>
<th>TO</th>
<th>WIDTH (FT)</th>
<th># OF LANES</th>
<th>MEDIAN</th>
<th>LANE WIDTH (FT)</th>
<th>SIDEWALKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Century Blvd.</td>
<td>Prairie Ave.</td>
<td>East Park Boundary (east of Yukon Ave.)</td>
<td>76'–88'</td>
<td>6</td>
<td>10' striped/landscaped</td>
<td>11' lanes</td>
<td>8' parkway &amp; 5' sidewalk on development side; 12' on the south side</td>
</tr>
<tr>
<td>Prairie Ave.</td>
<td>Kelso St.</td>
<td>Century Blvd.</td>
<td>76'–88'</td>
<td>6</td>
<td>10' striped/landscaped</td>
<td>11' lanes</td>
<td>8' parkway &amp; 5' sidewalk on development side; 7' on the west side</td>
</tr>
</tbody>
</table>

Only the eastern side of Prairie Ave. and northern side of Century Blvd. right-of-ways will be improved as part of the Specific Plan. The traffic study has indicated right-turn lanes should be added at designated entrances into the Hollywood Park development.
CITY OF INGLEWOOD PEDESTRIAN SAFETY ASSESSMENT (2013)

In 2013, the City commissioned a Pedestrian Safety Assessment (PSA) which analyzed current safety conditions for pedestrians and to a limited degree, bicyclists. The assessment found that Inglewood ranked sixth of 56 similarly sized Californian cities in the number of pedestrians injured or killed per capita. The assessment documented that Inglewood has a need to plan for effective investments to reduce serious pedestrian and bicycle safety issues, and to provide a disadvantaged community with a broader range of high-quality transportation options. Recommendations included general and location-specific improvements such as enhancements to motorists’ visibility of pedestrians, intersection improvements, ADA-compliancy, and suggested bikeway treatments.

A walking audit was conducted at five focus areas, and site-specific improvements were recommended at each of the focus areas. These locations are listed below:

- La Tijera School
  - La Tijera Blvd/Fairview Blvd.
  - La Tijera Blvd./64th Pl.
  - Downtown Inglewood
- Mid-block crosswalk on Market St between Queen St. and Regent St.
  - Market St./Regent St.
  - Market St./Florence Ave.
  - Locust St./Florence Ave.
  - Locust St./Grace Ave.
  - Parking garage on Locust St. between Queen St. and Manchester Blvd.
  - Locust St./Hillcrest Blvd.
  - Market St. at Hillcrest Blvd./Kelso St.
- Maitland Ave. between 80th St. and Van Ness Ave.
- Crenshaw Blvd. between Imperial Blvd. and I-105 light rail station
  - Imperial Blvd./Crenshaw Blvd.
  - Crenshaw Blvd. near Crenshaw LRT station
  - 120th St/Dominguez Channel (west of Crenshaw Blvd within the City of Hawthorne)
- Century Blvd at and east of I-405

We reviewed any overlaps between the locations identified in the ATP/SRTS and the PSA to ensure that the recommendations in the ATP/SRTS consider the challenges and opportunities raised in the PSA.
CITY OF INGLEWOOD ENERGY AND CLIMATE ACTION PLAN (2013)

In early 2013, the City of Inglewood adopted its Energy and Climate Action Plan (ECAP). This Action Plan provides a roadmap for achieving city-wide energy consumption and greenhouse gas (GHG) emissions reductions, with reduction targets by 2020 and 2035.

Since 54% of the City’s current GHG emissions are from transportation, recommendations under ‘Strategy 4’ primarily target improving the City’s transportation network, reducing vehicle miles traveled (VMT) and enhancing the quality of life for residents and workers. These strategies include, but not limited to, the following:

- applying complete streets policies
- prioritizing transportation funding around transit stations to encourage walking and biking and calm traffic
- expanding local transit shuttle service
- improving local transit stops
- exploring expansion of the I-Line shuttle system, as well as reconfiguring I-Line route to accommodate new development
- expanding of bike lanes and facilities, including requiring bicycle parking in the new commercial and multifamily buildings
- expanding sidewalk and street improvements
- implementing parking strategies to reduce vehicle trips
- encouraging land use intensification and diversity around transit stations

The ATP/SRTS Plan aligns with the strategies found the ECAP to increase transportation options, reduce vehicle miles traveled (VMT), and promote alternative and active modes of travel.
PLANS OF NEIGHBORING CITIES

SOUTH BAY BICYCLE MASTER PLAN (2011)

The South Bay Bicycle Master Plan is a multi-jurisdictional plan to prioritize regional connectivity, encourage new riders, support active transportation and improve overall road safety. The Plan guides the cities of El Segundo, Gardena, Hermosa Beach, Lawndale, Manhattan Beach, Redondo Beach, and Torrance. The following streets with proposed facilities in the South Bay Bicycle Master Plan will connect with bikeways in Inglewood:

- Imperial Ave. (Proposed Bicycle-Friendly Street/Bike Route)
- Inglewood Ave. (Proposed Bike Lane)

COUNTY OF LOS ANGELES BICYCLE MASTER PLAN (BMP) (2012)

The County of Los Angeles Bicycle Master Plan guides the development and maintenance of a comprehensive bicycle network and programs within the unincorporated communities in Los Angeles. The following existing and proposed bikeways in the County provide potential connections to the City of Inglewood:

<table>
<thead>
<tr>
<th>STREET</th>
<th>FROM</th>
<th>TO</th>
<th>BIKEWAY TYPE</th>
<th>CITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hawthorne Blvd.*</td>
<td>104th St.</td>
<td>111th St.</td>
<td>Bike lanes</td>
<td>Lennox</td>
</tr>
<tr>
<td>111st St.</td>
<td>Buford Ave.</td>
<td>Prairie Ave.</td>
<td>Bike route</td>
<td>Lennox, Inglewood</td>
</tr>
<tr>
<td>104th St.</td>
<td>Buford Ave.</td>
<td>Prairie Ave.</td>
<td>Bike route</td>
<td>Lennox, Inglewood</td>
</tr>
<tr>
<td>Lennox Blvd.</td>
<td>Felton Ave.</td>
<td>Osage Ave.</td>
<td>Bike route</td>
<td>Lennox</td>
</tr>
<tr>
<td>Freeman Ave.</td>
<td>104th St.</td>
<td>111th St.</td>
<td>Bike route</td>
<td>Lennox</td>
</tr>
<tr>
<td>Buford Ave.</td>
<td>104th St.</td>
<td>111th St.</td>
<td>Bike route</td>
<td>Lennox</td>
</tr>
<tr>
<td>Imperial Hwy.</td>
<td>La Cienega Blvd.</td>
<td>Inglewood Ave.</td>
<td>Bike lanes</td>
<td>Lennox, Hawthorne, City of Los Angeles</td>
</tr>
<tr>
<td>Lohengrin Ave./110th St.</td>
<td>Imperial Hwy.</td>
<td>Budlong Ave.</td>
<td>Bike blvd.</td>
<td>West Athens-Westmont</td>
</tr>
<tr>
<td>Imperial Hwy.</td>
<td>Van Ness Ave.</td>
<td>Vermont Ave.</td>
<td>Bike lanes</td>
<td>West Athens-Westmont</td>
</tr>
</tbody>
</table>

*Hawthorne Blvd. turns into La Brea Ave. within the City of Inglewood
CITY OF LOS ANGELES MOBILITY PLAN 2035 (2016)

The Mobility Plan 2035 provides the policy foundation for achieving a balanced transportation network that serves all users. An update to the City’s 1999 General Plan Transportation Element, the Plan emphasizes the need to improve citywide mobility through advanced transportation technology, reduction of vehicle, and transit-oriented development. The Plan also sets forth street designations and related standards that take into account a ‘complete streets’ approach.

In relation to the City of Los Angeles Bicycle Master Plan (2010) mentioned below, the Mobility Plan builds upon the idea of bicycle networks with the vision of fully separated, protected bike lanes.

The Plan reclassifies the City’s streets to enhance walking and bicycling, access to destinations and multi-modal connections. The following streets in the City of Los Angeles that lead into Inglewood have been identified to serve pedestrians and bicyclists:

NEIGHBORHOOD ENHANCEMENT NETWORKS:
Collector, local and arterial streets that provide a safe environment for walking, biking, and slower moving modes

- 77th St/Hindry Ave.
- Aviation Blvd.
- Rimpau Blvd.
- Century Blvd.
- West Blvd.
- Hyde Park Blvd.
- 8th Ave.
- 79th St.
- 83rd St.
- Cimarron St.
- Gramercy Pl.
- Overhill Dr.

BICYCLE ENHANCED NETWORKS AND BICYCLE LANE NETWORK:
Network of arterials and rights-of-way prioritized for bicyclists

**Bike path:**
- Metro Crenshaw/LAX rail corridor

**Protected bike lanes:**
- Crenshaw Blvd.
- Manchester Blvd.
- Aviation Blvd.
- Westchester Pkwy/Arbor Vitae St.
- Imperial Ave.
- La Tijera Blvd.
- West Blvd.
- Florence Ave.
- Van Ness Ave.
- 76th St.
- Century Blvd.
- 92nd St/Arbor Vitae St.
- 96th St.

PEDESTRIAN ANALYSIS
Arterial streets prioritized for pedestrians.

- Aviation Blvd.
- Century Blvd.
- Arbor Vitae St.
- Century Blvd.
- Florence Ave.
- Manchester Blvd.
- Crenshaw Blvd.
The City of Los Angeles Bicycle Plan proposes 1,684 miles of bikeways, a comprehensive list of policies and programs, and implementation procedures. Of the proposed bikeways, the table below lists segments in the City of Los Angeles that connect to Inglewood. This Plan incorporates these segments in planning for an interconnected system of bikeways and facilities.

### CITY OF LOS ANGELES PROPOSED BIKEWAYS THAT CONNECT TOINGLEWOOD

<table>
<thead>
<tr>
<th>STREET</th>
<th>FROM</th>
<th>TO</th>
<th>BIKEWAY TYPE</th>
<th>CITY REGION</th>
</tr>
</thead>
<tbody>
<tr>
<td>76th St.</td>
<td>Crenshaw Blvd.</td>
<td>Vermont Ave.</td>
<td>Proposed: Bike Lane Existing: Bike Route</td>
<td>Central/South</td>
</tr>
<tr>
<td>96th St.</td>
<td>Van Ness Ave.</td>
<td>Manhattan Pl.</td>
<td>Bike lanes</td>
<td>Central/South</td>
</tr>
<tr>
<td>Arbor Vitae St.</td>
<td>Airport Blvd.</td>
<td>La Cienega Blvd.</td>
<td>Bike lanes</td>
<td>West/Central</td>
</tr>
<tr>
<td>Arlington/</td>
<td>54th St.</td>
<td>Century Blvd.</td>
<td>Bike lanes</td>
<td>Central/South</td>
</tr>
<tr>
<td>Van Ness Ave.</td>
<td>Arbor Vitae St.</td>
<td>Imperial Hwy.</td>
<td>Bike lanes</td>
<td>West/Central</td>
</tr>
<tr>
<td>Century Blvd.</td>
<td>Van Ness Ave.</td>
<td>Western Ave.</td>
<td>Bike lanes</td>
<td>Central/South</td>
</tr>
<tr>
<td>Florence Ave.</td>
<td>West Blvd.</td>
<td>Central Ave.</td>
<td>Bike lanes</td>
<td>Central/South</td>
</tr>
<tr>
<td>La Tijera Blvd.</td>
<td>Sepulveda Blvd.</td>
<td>La Cienega Blvd.</td>
<td>Bike lanes</td>
<td>Central/South</td>
</tr>
<tr>
<td>La Tijera Blvd.</td>
<td>290’ n/o 63rd St.</td>
<td>64th St.</td>
<td>Bike lanes</td>
<td>Central/South</td>
</tr>
<tr>
<td>Manchester Ave.</td>
<td>Sepulveda Blvd.</td>
<td>320’ e/o Osage Ave.</td>
<td>Bike lanes</td>
<td>West/Central</td>
</tr>
</tbody>
</table>

### BICYCLE-FRIENDLY STREETS

The following streets provide connections into Inglewood and have been designated in the 2010 Bicycle Plan as Bicycle-Friendly Street (BFS). BFS are typically lower volume residential local and collector streets that make up a majority of all neighborhood streets. Similar to Class III Bicycle Routes, BFS shall include signage and shared lane markings (or sharrows) and include at least two traffic calming treatments that help to slow vehicular speeds.

- Hyde Park Blvd.
- 67th St.
- 79th St.
- 83rd St.
- Overhill Dr.
- Rimpau Blvd.
- West Blvd.
- 8th Ave.
- Gramercy Pl.
- Cimarron St.
- 77th St./Hindry Ave.
CRENSHAW BOULEVARD STREETSCAPE PLAN (2015)

The City of Los Angeles Bicycle Plan proposes 1,684 miles of bikeways, a comprehensive list of policies and programs, and implementation procedures. Of the proposed bikeways, the table below lists segments in the City of Los Angeles that connect to Inglewood. This Plan incorporates these segments in planning for an interconnected system of bikeways and facilities.

In September 2015, the City of Los Angeles approved the Crenshaw Boulevard Streetscape Plan to create a complete, multi-modal street that reflects the future Metro Crenshaw/LAX Line Light Rail Transit project. The Streetscape Plan aims to make the Crenshaw Corridor a more pedestrian and bicycle-friendly place by proposing streetscape enhancements, including street trees, street furniture, crosswalks and other features that will improve the street character. The boundaries of the Plan extend along Crenshaw Boulevard from Adams Boulevard to the north and 79th Street to the south, within the City of Los Angeles boundary.

While the Streetscape Plan does not apply to boundaries within the City of Inglewood, it recommends the following street improvements along Crenshaw Blvd. from 67th St. to 79th St.:

- Existing: 6 lanes, center turn lane
- Proposed: 2 lanes, center turn lane (with scattered medians), parking/bus platform on both travel directions, buffered bike lanes (6’ bike lanes with 4’ raised buffer)

The extent of Crenshaw Boulevard from Florence Avenue to 78th Street has also been designated under the Mayor’s office as a “Great Street”. The Great Street Initiative seeks to increase economic activity, improve mobility and access, enhance neighborhood character, improve public safety, and support great neighborhoods along the 15 “Great Street” street segments in the City.

The ATP/SRTS Plan incorporates considerations from the Streetscape Plan for improvements along Crenshaw Boulevard within the City of Inglewood.
REGIONAL PLANS

METRO RAIL TO RIVER INTERMEDIATE ACTIVE TRANSPORTATION CORRIDOR FEASIBILITY STUDY

The Active Transportation Rail to River Corridor project will convert approximately 10 miles of railroad right-of-way into a bike and pedestrian path that could link the cities of Los Angeles, Inglewood, Huntington Park, Vernon, Maywood, and Bell.

The project is composed of two distinct segments, Segments A and B, which will form one path. Segment A of the project, referred to as “Rail to “Rail”, will connect the future Crenshaw/LAX line to the Metro Blue Line. Segment A will stretch approximately 6.4 miles long, stretching east along the Harbor Subdivision rail right-of-way following Slauson Avenue through South Los Angeles to Santa Fe Avenue in the City of Vernon. Segment A terminates at Santa Fe Avenue in Vernon. Once complete, it will provide connections to three transportation hubs, including the future Metro Crenshaw/LAX Line’s Fairview Heights station.

As of writing this plan, Segment A is currently in the Preliminary Engineering and Environmental Clearance phase and is undergoing the initial design process. Construction is scheduled to begin Spring 2018 and the project is scheduled for completion in late 2019.

Conceptual plans to access the Fairview Heights station were developed outside of the City of Inglewood boundary, directing bicyclists along 67th Street, across a signalized intersection at 67th Street and Crenshaw Boulevard to West Boulevard. 67th Street is designated as a bicycle boulevard. West Boulevard is designated as bike lanes. This project provides an exciting opportunity for the City of Inglewood to improve its pedestrian and bicycle access around the surrounding station area.

FLORENCE/WEST STATION CONNECTIONS

Figure 35 - Existing and Proposed Sections on 67th Street

Figure 36 - Metro Florence/West Station Connections
In 2016, the Los Angeles County Transportation Authority (Metro) released the Active Transportation Strategic Plan (ATSP) to increase walking, bicycling and transit mobility throughout the region. The Plan serves as an update to the 2006 Bicycle Transportation Strategic Plan and Metro’s overall strategy for funding and implementing active transportation facilities and programs.

The ATSP proposes a Regional Active Transportation Network and identifies first-last mile active transportation improvements to the region’s 661 transit station areas. The Plan is designed to connect key regional destinations across the county and create a network of high-quality, low-stress walking and biking facilities. The on-street and off-street bikeway network identified in the regional network that cross through into Inglewood are listed below:

<table>
<thead>
<tr>
<th>STREET</th>
<th>FROM</th>
<th>TO</th>
<th>BIKEWAY TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florence Ave.</td>
<td>West city limit</td>
<td>East city limit</td>
<td>Bike lanes</td>
</tr>
<tr>
<td>Crenshaw Blvd.</td>
<td>North city limit</td>
<td>South city limit</td>
<td>Unspecified</td>
</tr>
<tr>
<td>Manchester Ave.</td>
<td>West city limit</td>
<td>La Brea Ave.</td>
<td>Unspecified</td>
</tr>
<tr>
<td>Manchester Ave.</td>
<td>La Brea Ave.</td>
<td>Prairie Ave.</td>
<td>Unspecified</td>
</tr>
<tr>
<td>Manchester Ave.</td>
<td>Prairie Ave.</td>
<td>East city limit</td>
<td>Unspecified</td>
</tr>
<tr>
<td>Hillcrest Blvd.</td>
<td>Florence Ave.</td>
<td>La Brea Ave.</td>
<td>Bike route</td>
</tr>
<tr>
<td>La Brea Ave.</td>
<td>Manchester Ave.</td>
<td>Hardy St.</td>
<td>Bike lane</td>
</tr>
<tr>
<td>La Brea Ave.</td>
<td>Hardy St.</td>
<td>South city limit</td>
<td>Unspecified</td>
</tr>
<tr>
<td>Van Ness Ave.</td>
<td>North city limit</td>
<td>Manchester Blvd.</td>
<td>Bike lanes</td>
</tr>
</tbody>
</table>
The Southern California Association of Governments (SCAG) adopted the Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS) in 2016. The RTP/SCS serves as a policy guide for the region and integrates the region’s transportation and land use planning. It aims to reduce greenhouse gas emissions from transportation in accordance with California’s Sustainable Communities and Climate Protection Act and includes significant investments in multimodal transportation and non-motorized transportation. More than $650 million in Active Transportation Program investments are underway to develop a regional bikeway network to connects cities and counties in the region, increase bicycle accessibility to transit and develop safety and encouragement programs.

The RTP/SCS’s Active Transportation component sets strategies for maximizing active transportation and creating a comprehensive local bikeway and pedestrian network, using Complete Streets principles. These strategies include:

- **Regional Trip Strategies**
  - Regional bikeway networks

- **Transit Integration Strategies**
  - First/Last Mile (to rail)
  - Livable Corridors (bus corridors)
  - Bike Share Services

- **Short-trip Strategies**
  - Sidewalk quality
  - Local bikeway networks
  - Neighborhood Mobility Areas (limited transit)

- **Education/Encouragement Strategies**
  - Safe Routes to School
  - Safety/Encouragement Campaigns

As part of the transit integration strategies, the City of Inglewood is moving ahead in their planning efforts to develop the First/Last Mile Strategic Plan for three stations on the Creshaw/LAW Line: Fairview Heights (Florence/West), Downtown Inglewood (Florence/La Brea), and Westchester/Veterans (Manchester/Aviation). These strategies will increase transit ridership by expanding the number of origin-and-destination trips within a 1/2 mile walk or bicycle ride of the stations.

Several bicycle-friendly streets were designated in Inglewood as part of the short-trip strategies. However, local jurisdictions are responsible for determining the final route and bikeway type of these networks.
The Inglewood First/Last Mile Plan was prepared by the Los Angeles County Metropolitan Transportation Authority (Metro) and their consultants to plan improvements to the walking and bicycling environment to four Metro train stations in or adjacent to Inglewood. It was prepared for the City of Inglewood in coordination with the City of Los Angeles, the City of Hawthorne, and Los Angeles World Airports. The stations are:

- Fairview Heights Crenshaw/LAX Line Station
- Downtown Inglewood Crenshaw/LAX Line Station
- Westchester/Veterans Crenshaw/LAX Line Station
- Crenshaw Green Line Station.

As the Crenshaw/LAX Line is still under construction, the plan proposes improvements that will aid people walking and on bicycles when it opens up. The improvements planned for the Crenshaw Station will improve conditions to an existing Green Line station.

This plan identified some key challenges to pedestrian and bicycle access to the stations. Those include:

- Long blocks
- Wide arterial streets to cross
- Freeway crossings
- Lack of streetscape amenities.

The top recommendations include:

- Crosswalk improvements (high-visibility crosswalks, dual curb ramps, pedestrian signals, etc.)
- New sidewalks and sidewalk repaving
- Bicycle infrastructure
- Additional lighting
- Visual enhancements that reflect characteristics of the city and local neighborhoods.

These recommendations provide a list of projects that the City can apply for funds to construct.
GOALS, POLICIES & STRATEGIES

This chapter guides the implementation of the Inglewood Active Transportation & Safe Routes to School Plan (ATP/SRTS).

**GOALS** set the context for planning policies and strategies to carry out the ATP/SRTS. They provide long-term vision and serve as the foundation of the plan. Goals are broad statements of purpose.

**POLICIES** spell out regular practices that guide the City and School District’s strategies to meet the goals.

**STRATEGIES** describe specific steps the City can take to meet the goals and policies. Policies and strategies follow specific objectives below.

The ability to enact all the goals, policies and strategies depends partially on the availability of financial resources.
GOAL 1

TO MAKE INGLEWOOD INTO A HEALTHIER, RESILIENT, MORE LIVABLE, ENVIRONMENTALLY SUSTAINABLE, AND ECONOMICALLY VIBRANT CITY

POLICY 1.1. IMPLEMENT THE ATP/SRTS

- Seek all federal, state, county and local funding sources and prepare projects to meet the guidelines.
- Coordinate with neighboring jurisdictions to apply for regional funds.
- Continue to seek opportunities to implement pedestrian and bicycle projects as part of other capital improvement projects. For example, stripe new bike lanes when streets are resurfaced, reconfigured or reconstructed.
- Require the construction of new pedestrian and bicycle facilities in conjunction with new development.
- Evaluate using traffic mitigation funds for bicycle projects.
- Seek new local innovative funding sources as they become available.

POLICY 1.2. ENSURE THAT PLANNING, DESIGN AND IMPLEMENTATION DOCUMENTS ARE ADHERED TO

- Ensure all new capital improvement projects go through review processes for compliance with the ATP/SRTS.
- Ensure that new development projects go through review processes for compliance with the ATP/SRTS.
- Prepare and submit to the City Council an annual ATP/SRTS implementation report.

POLICY 1.3. REVISE THE MUNICIPAL CODE ON CROSSWALK INSTALLATION, REMOVAL, AND ENHANCEMENT

- Ensure the crosswalk policy in the Municipal Code reflects best practices and recent research with respect to the installation, removal, and enhancement of crosswalks, which includes removing crosswalks only as an option of last resort and providing midblock crossings where they serve pedestrian desire lines.
- Adopt the high-visibility continental crosswalk treatment as the standard along school routes and crossings with multi-lane streets, and where pedestrian activity demands it.

POLICY 1.4. STRENGTHEN THE MUNICIPAL CODE AND TRANSPORTATION DEMAND MANAGEMENT ORDINANCE ON BICYCLE END-OF-TRIP AMENITIES

- Expand the requirements for new developments to provide safe, convenient and secure bicycle parking and end-of-trip amenities. This could include: allowing reductions in automobile parking for bicycle parking, showers and clothing lockers, and requiring showers and clothing lockers in new commercial, industrial and institutional developments according to square footage.
POLICY 1.5. DEVELOP A CITY-WIDE INVENTORY OF SIDEWALKS, CROSSWALKS, SIGNS, MARKINGS AND SIGNALS
- Develop an inventory of existing and missing sidewalks in GIS format, and expand the sidewalk inventory to include informal pathways (i.e. alleys) and other pedestrian opportunity areas
- Develop an inventory of pedestrian crosswalks, signs, markings and signals in GIS format
- Prioritize repairs and installations based on inventory
- Adopt a Complete Streets Policy or Amend the Transportation Element Accordingly

ACHIEVE A SAFE, COMFORTABLE AND ATTRACTIVE BICYCLING ENVIRONMENT FOR RIDERS OF ALL AGES AND PHYSICAL ABILITIES

POLICY 2.1. IMPLEMENT A NETWORK THAT ENHANCES BICYCLIST SAFETY AND COMFORT
- Develop a network of “low stress” bikeways, as recommended in the ATP/SRTS, that can attract the greatest number of bicyclists
- Add planned bike lanes, buffered bike lanes, and protected bike lanes on designated on-street bikeways; color the bike lanes on major roads and arterials
- Where bike lanes don’t fit, restripe streets to add width to the curb lane when arterial and collector streets are resurfaced
- Add bike routes with sharrows as called for in the ATP/SRTS
- Provide clear bikeway signs showing direction, distance and time to key destinations along bikeways.
- Publish bikeway system maps
- Establish ‘Champion’s Mile’ bike routes from the Metro stations to the NFL stadium

POLICY 2.2. INTEGRATE THE CITY’S BIKEWAY NETWORK WITH BIKEWAYS IN SURROUNDING JURISDICTIONS
- Connect bikeways to regional networks in the neighboring jurisdictions, such as the South Bay cities and greater Los Angeles County

POLICY 2.3. INCORPORATE BIKEWAYS AND IMPROVE BICYCLE BIKEWAYS ACCESS INTO NEW OR PLANNED DEVELOPMENT PROJECTS
- Encourage and support construction of bikeways as a condition of approval of new development projects and major redevelopment projects
- Provide convenient bicycle access to and within the proposed Hollywood Park development site

POLICY 2.4. DEVELOP BIKEWAYS THAT SERVE THE FULL SPECTRUM OF BICYCLISTS
- Seek opportunities to create convenient bicycle paths on separate rights-of-way where it can be done safely and cost-effectively
- Plan new bikeways on streets in new and redeveloped areas
ACHIEVE A SAFE, COMFORTABLE AND ATTRACTIVE PEDESTRIAN ENVIRONMENT FOR PEOPLE OF ALL AGES AND ABILITIES

POLICY 3.1. DESIGN STREETS THAT ENHANCE PEDESTRIAN SAFETY AND COMFORT

• Implement the projects recommended in the ATP/SRTS
• Apply the pedestrian design toolbox at locations not included in the ATP/SRTS
• Employ traffic calming strategies in locations where speed surveys suggest traffic speeds are too high for pedestrian areas
• Explore the use of 15 mph school zones by conducting necessary analysis
• Incorporate countdown signals and Accessible Pedestrian Signals to all pedestrian signals
• Ensure that all pedestrian improvements meet Americans with Disabilities Act (ADA) requirements (i.e., directional curb ramps with truncated domes, traffic signals with Accessible Pedestrian Signals, etc.)
• Establish ‘Champion’s Mile’ pedestrian route from Metro stations to the NFL stadium

POLICY 2.5. APPLY NEW TECHNOLOGIES AND INNOVATIVE TREATMENTS ON APPROPRIATE ROADS AND BIKEWAYS

• Where feasible, design bikeways beyond the minimum required widths
• Upgrade vehicle sensors to detect bicyclists when capital improvement projects are done at signalized intersections
• Where needed, install lighting on bikeways
• Install buffered bike lanes and protected bike lanes for people not comfortable riding in basic bike lanes
• Apply new technology as it becomes available

SUSTAIN A SUPPORTIVE ENVIRONMENT FOR WALKING & BICYCLING

POLICY 4.1. FACILITATE THE PROVISION OF QUALITY BICYCLE SUPPORT FACILITIES AT LOCAL AND REGIONAL DESTINATIONS

• Provide convenient, highly visible and secure bicycle parking at schools, parks, public buildings, private development including the Hollywood Park development site, and other destinations where demand is needed
• Install bike share stations at the Hollywood Park development site, downtown, parks and other locations where demand is foreseen
• Encourage the use of quality bicycle racks that support bicycles well and are easy to lock to
• Develop and distribute guidelines with a set of standard design and locational details for bicycle racks and lockers
• Require installation of bicycle end-of-trip amenities (bicycle parking, showers and clothing lockers) as a condition of approval of new commercial development projects and commercial redevelopment
projects of predetermined size

- Develop a program to assist business districts in installing bike racks and lockers in appropriate locations
- Add restrooms, benches, drinking fountains, shade facilities, emergency call boxes, bike racks and waste receptacles along Class I bike paths (Class I bike path is recommended through Edward Vincent Jr. Park) where they don’t exist

**POLICY 4.2. ENCOURAGE AND SUPPORT WALKING AND BICYCLING IN CONJUNCTION WITH OTHER MODES OF TRANSPORTATION**

- Install high-security bicycle parking (lockers, attendant parking, automated parking) and bike racks at Metro Rail stations
- Install bicycle lockers and bicycle racks at bus stops with high ridership
- Allow folding bicycles on board Inglewood’s I-Line Shuttle
- Add bicycle racks to the front of Inglewood’s I-Line Shuttle buses
- Initiate a bike sharing program with Metro Rail stations, and other high demand bus stops where demand is foreseen
- Install wayfinding signs throughout the City that direct pedestrians and bicyclists to local sites of interest

**ESTABLISH UNIVERSAL AWARENESS OF THE VALUE OF WALKING AND BICYCLING THROUGH EDUCATION, ENCOURAGEMENT, ENFORCEMENT AND EVALUATION SUPPORT PROGRAMS**

**POLICY 5.1. ENCOURAGE AND SUPPORT COMPREHENSIVE PEDESTRIAN AND BICYCLE SAFETY EDUCATION AWARENESS PROGRAMS FOR PEDESTRIANS, BICYCLISTS AND MOTORISTS**

- Work with local schools to implement and institutionalize a comprehensive pedestrian & bicycle education program that teaches all school children to follow the rules of the road
- Encourage schools and school districts to implement a comprehensive pedestrian and bicycle education program for their students, faculty and staff
- Encourage employers to implement a comprehensive pedestrian and bicycle education program for their employees
- Support a comprehensive pedestrian and bicycle education program for the general public
- Enhance the education of the Police Department regarding the laws pertaining to walking and bicycling
- Encourage the inclusion of pedestrian and bicycle education for crossing guards and bus drivers in their training programs
- Initiate a pedestrian and bicycle planning awareness program for all City staff who may take action that affects pedestrians and cyclists
- Support a public relations campaign to educate motorists on the rights of pedestrians and bicyclists
- Support a public relations campaign to educate cyclists on wearing helmets, using lights and proper riding behavior
POLICY 5.2. ACTIVELY ENCOURAGE CITY STAFF, EMPLOYEES, RESIDENTS, VISITORS, AND STUDENTS TO WALK AND BICYCLE AS OFTEN AS POSSIBLE

- Encourage City officials and employees, and other employers to participate in “Bike to Work Week” every May
- Encourage schools to coordinate a “Bike to School Day” event
- Encourage schools to participate in “International Walk to School Day” every October
- Coordinate with bike shops to distribute bicycle safety and promotional material
- Provide promotional safety information and local bike maps
- Develop a map to showcase local sites of interest, including walking and biking routes between the sites

ACHIEVE AN EQUITABLE TRANSPORTATION SYSTEM

POLICY 6.1: PROVIDE EQUAL PEDESTRIAN AND BICYCLE ACCESS FOR ALL THROUGH PUBLIC ENGAGEMENT, PROGRAM DELIVERY, AND CAPITAL INVESTMENT

- Strengthen partnerships with the County of Public Health, community-based organizations, school district, faith-based institutions, and others that can help to realize the economic, health and societal benefits of walking and bicycling to the greater public
- Consider establishing a Safe Routes for Seniors program, working with the senior community, to enable more elderly residents and visitors to walk and ride bicycles

POLICY 6.2: IMPROVE PERSONAL SAFETY FOR STUDENTS WALKING AND BICYCLING TO SCHOOL

- Ensure students feel safe while walking and bicycling to and from school by providing enhanced street lighting and maintaining overgrown shrubbery along sidewalks
- Increase police enforcement around schools where illicit activities or behaviors are a common occurrence
- Publicize a hotline where students can report illicit activities to law enforcement officers

POLICY 6.3: ENSURE UNIVERSALLY ACCESSIBLE DESIGN STANDARDS FOR PEOPLE OF ALL AGES AND ABILITIES

- Develop a full Americans with Disabilities Act (ADA) Transition Plan that builds upon the ADA Transition Framework Plan in the ATP/SRTS
- Create a City position of ADA Coordinator to monitor system compliance needs and all new capital improvement and resurfacing projects, to liaise with the public on ADA compliance issues, and help bring projects into compliance
- Ensure that all sidewalks and curb ramps are accessible with ADA standards
- Ensure bus stops are accessible by ADA standards and provide enhanced amenities (i.e. bus shelter with seating and trash receptacles)
SUSTAIN ON-GOING PRACTICES

POLICY 7.1 ENSURE THAT ONGOING MAINTENANCE KEEPS PEDESTRIAN & BICYCLE FACILITIES IN GOOD REPAIR

- Continue to implement a surface management system to keep all streets well-maintained.
- Surface should be maintained at least as close to the curb as 1 foot.
- Adopt an accelerated surface maintenance schedule for all designated bikeways.
- Ensure the maintenance program to sweep streets and bikeways keeps the bicycle facilities in good repair.
- Ensure the maintenance program to keep pedestrian and bicycle signage and paint in good condition.
- Initiate a “Spot Improvement” program to eliminate hazards and inconveniences.
- Establish a hotline and web address to report safety hazards and other pedestrian and bicycle-related issues throughout the City.

POLICY 7.2 CONDUCT REGULAR MONITORING TO INFORM AND SUPPORT THE ATP/SRTS

- Conduct pedestrian and bicycle counts before and after construction of pedestrian and bicycle-related improvements and continue the counts as needed.
- Continue to monitor pedestrian and bicycle crashes documenting their locations and causes on a regular basis.

POLICY 7.3 CONTINUE TO GATHER INFORMATION AND MAKE MODIFICATIONS TO ENSURE ENACTMENT OF THE ATP/SRTS

- Evaluate the need to update the ATP/SRTS every five years.
- Create a City position of Pedestrian & Bicycle Coordinator or Mobility Coordinator to develop funding proposals for pedestrian and bicycle projects, monitor pedestrian and bicycle system needs and all new capital improvement projects, to liaison with the public on pedestrian and bicycle issues and help implement pedestrian and bicycle programs.
- Create a Pedestrian and Bicycle Advisory Committee comprised of residents, City staff and other interested parties that meet on a regular or annual basis.
CHAPTER

5
This Chapter evaluates the current walking and biking conditions, summarizes public input gathered during the Plan’s extensive community engagement efforts, and identifies opportunities and constraints for new pedestrian and bike facilities.
INGLEWOOD TODAY

A MIX OF LAND USES

A large portion of Inglewood’s land use today is residential. Single-family and low-density residential land occupies much of the community outside of the central core. Medium-density residential land with multi-family housing units are concentrated just beyond the center of Inglewood primarily between Centinela Avenue and Arbor Vitae Street. Commercial uses are clustered in the downtown area. Strip commercial uses are zoned along La Brea Avenue, Manchester Avenue, Centinela Avenue, Arbor Vitae Street, Century Boulevard, Hawthorne Boulevard, Prairie Avenue, Crenshaw Boulevard and Imperial Highway. The Civic Center sits along La Brea Avenue just north of Manchester Boulevard. Inglewood has two industrial areas. One is along Florence Avenue west of Inglewood Avenue and the other along Century Boulevard. Inglewood has 12 City parks that are dispersed throughout the city. It also has 17 neighborhood schools that are also well distributed throughout the city.

Future plans will focus new development around the Downtown Transit-Oriented Development (TOD) area, the Fairview Heights TOD area, and within the new Los Angeles Stadium and Entertainment District at Hollywood Park (LASED) project. Commercial, retail and higher-density residential uses will be concentrated in the two TOD areas. The LASED will host a new stadium as the new home of the Los Angeles Rams and Los Angeles Chargers football teams. The new development will also include new office space, a large retail complex, hotel rooms, new multi-family residences and event space. Additionally, the City hopes to revitalize Market Street as pedestrian-oriented retail with a direct pedestrian connection to the Downtown Crenshaw Line Metro station. The Inglewood Forum that now hosts concerts.

The map on the following page displays these land uses.
Chapter 5

Map 5.1 Current & Future Land Use

Legend:
- Fairview Heights TOD
- Downtown TOD
- Major Mixed-Use
- Low Density: 0-6 D.U./AC.
- Low Medium Density: 7-22 D.U./AC.
- Medium Density: 23-43 D.U./AC.
- Commercial
- Commercial/Residential
- Commercial/Recreational
- Industrial
- Public/Semi-Public
- Hospital-Medical/Residential
- Open Space
- The Forum
- Stadium Border
- City Limits

Source: City of Inglewood General Plan Areas Data (January/October 2017)
MAP 5.2 BICYCLE AND PEDESTRIAN COUNTS

BICYCLE AND PEDESTRIAN COUNTS
20 CITYWIDE COUNT LOCATIONS
EXISTING BICYCLE & PEDESTRIAN COUNTS

Bicycle and pedestrian counts provide a systematic method of gathering data about walking and bicycling in Inglewood. Counts were conducted throughout 20 key locations over 12 different days during the period between September 2016 to December 2016. Counts at each location were held from 7-9 AM and 4-6 PM for weekday counts, and from 11 AM – 1 PM on weekend counts. Counts were recorded in 15-minute intervals. The counts shown in MAP 5.2 record the sum of all counts recorded during the three different time intervals.

For bicycle counts, direction of travel, sidewalk riding, wrong way riding (excludes sidewalk riding), and helmet use were recorded. For pedestrian counts, direction of travel, gender, wheelchair/special needs characteristics, and whether the pedestrian was on a skateboard or scooter were noted.

SUMMARY OF RESULTS

469 bicyclists and 3,853 pedestrians were counted during the specified times. Of the bicyclists, 33 (7%) were female, 237 (50%) were riding on the sidewalk, 29 (6%) were riding in the wrong direction, and 374 (80%) were not wearing helmets. Of the pedestrians, 79 (2%) were people in wheelchairs or with special needs, and 138 (4%) were people traveling on skateboards or scooters.

Yukon Avenue, between 104th and 105th Streets, had overall the highest number of pedestrians and bicyclists counted. The location’s proximity to Morningside High School, Woodworth Elementary School, Monroe Middle School may be the result of a large number of numbers walking and bicycling from nearby residences.

Manchester Boulevard, between Grevillea Avenue and La Brea Avenue had the highest concentration of pedestrian activity. This may be likely due to the proximity to Inglewood High School and the commercial-serving services along La Brea Avenue and Market Street.

The summary of counts was used to make recommendations on where bikeways, signage, end-of-trip amenities, crossing enhancements and intersection improvements are needed.
MAP 5.3 BICYCLE AND PEDESTRIAN COLLISIONS

2014-2018

LEGEND
- Bicycle-Involved Injury Collision
- Bicycle-Involved Fatal Collision
- Pedestrian-Involved Injury Collision
- Pedestrian-Involved Fatal Collision
- City Limits

Source: California Transportation Injury Mapping System 2014-2018
EXISTING BICYCLE & PEDESTRIAN COLLISIONS

Map 5.3 and the table below display a five-year analysis of bicycle- and pedestrian-involved collisions between 2014 and 2018. 2016-2018 datasets remain provisional based on data collected by the Transportation Injury Mapping System (TIMS) website. During this period there were 249 pedestrian-involved collisions and 112 bicycle-involved collisions in Inglewood. A total of seven of the pedestrian-involved collisions were fatal while one of the bicycle-involved collisions was fatal.

TABLE. 5.1 BICYCLE AND PEDESTRIAN-INVOLVED COLLISIONS BETWEEN 2009-2013

<table>
<thead>
<tr>
<th>YEAR</th>
<th>TOTAL # OF BICYCLE COLLISIONS</th>
<th>FATAL</th>
<th>%</th>
<th>INJURY</th>
<th>%</th>
<th>TOTAL # OF PEDESTRIAN COLLISIONS</th>
<th>FATAL</th>
<th>%</th>
<th>INJURY</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>100%</td>
<td></td>
<td>3</td>
<td>3</td>
<td>100%</td>
<td>3</td>
<td>100%</td>
</tr>
<tr>
<td>2015</td>
<td>35</td>
<td>0</td>
<td>0%</td>
<td>100%</td>
<td></td>
<td>55</td>
<td>1</td>
<td>1.8%</td>
<td>55</td>
<td>100%</td>
</tr>
<tr>
<td>2016</td>
<td>30</td>
<td>1</td>
<td>3.3%</td>
<td>100%</td>
<td></td>
<td>72</td>
<td>2</td>
<td>2.9%</td>
<td>70</td>
<td>97.1%</td>
</tr>
<tr>
<td>2017</td>
<td>22</td>
<td>0</td>
<td>0%</td>
<td>100%</td>
<td></td>
<td>67</td>
<td>1</td>
<td>1.5%</td>
<td>66</td>
<td>98.5%</td>
</tr>
<tr>
<td>2018</td>
<td>25</td>
<td>0</td>
<td>0%</td>
<td>100%</td>
<td></td>
<td>52</td>
<td>0</td>
<td>0%</td>
<td>52</td>
<td>100%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>112</td>
<td>1</td>
<td>0.9%</td>
<td>100%</td>
<td></td>
<td>249</td>
<td>7</td>
<td>2.8%</td>
<td>246</td>
<td>98.8%</td>
</tr>
</tbody>
</table>

SOURCE: California Highway Patrol Statewide Integrated Traffic Records System (SWITRS)

COMMON COLLISION LOCATIONS

Many of the bicycle-involved collisions occurred on major streets and boulevards, including Florence Avenue, Manchester Boulevard, Arbor Vitae Street, Century Boulevard, Imperial Highway, Crenshaw Boulevard, and Prairie Ave. Approximately 58 crashes of all bicycle-related collisions between 2014 and 2018 occurred at intersections, while the remaining 54 crashes occurred midblock locations that were reported to the nearest intersection.

PEDESTRIAN-INVOLVED COLLISIONS

Pedestrian collisions were concentrated in Downtown Inglewood and along major streets and boulevards mirroring where bicycle collisions were reported. Approximately 110 crashes of all pedestrian-related collisions between 2014 and 2018 occurred at intersections, while the remaining 139 crashes occurred midblock locations that were reported to the nearest intersection.
**TABLE. 5.1 TYPES OF BICYCLE AND PEDESTRIAN-INVOLVED COLLISIONS 2009-2013**

<table>
<thead>
<tr>
<th>COLLISION TYPE</th>
<th>BICYCLE-INVOLVED</th>
<th>PEDESTRIAN-INVOLVED</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEAD-ON</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>SIDESWIPE</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>REAR-END</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>BROADSIDE</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>HIT OBJECT</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>VEHICLE-PEDESTRIAN</td>
<td>14</td>
<td>235</td>
</tr>
<tr>
<td>NOT STATED</td>
<td>83</td>
<td>0</td>
</tr>
</tbody>
</table>

**SOURCE:** California Highway Patrol Statewide Integrated Traffic Records System (SWITRS)
COMMUTE MODES & PATTERNS

The largest share of residents in Inglewood drive alone to work, while the preferred secondary means of commuting to work is carpooling. However, 12.4% of residents carpool and 7.9% of residents take public transit, which exceeds all national, state, and county mode shares. Over time, it is anticipated that more Inglewood residents will be using more public transit and alternative modes with the opening of the Metro LAX/Crenshaw stations. Only 0.6% of Inglewood residents bike to work, which is the same at the national level but slightly lower than the state and county levels. Inglewood also have a slightly lower percentage of residents walking in comparison. The City’s network of bicycle facilities is relatively underdeveloped, while there are several major arterials and busy streets that make it less pedestrian-friendly for trips done by walking. Increasing future walking and bicycling trips will depend on several factors, such as the availability of a well-connected network of pedestrian and bicycle facilities, as well as appropriate education, enforcement and encouragement programs. With appropriate facilities and programs in place, Inglewood could increase the number of trips done by walking and bicycling.

TABLE 5.3 COMMUTE MODES BY PERCENTAGES, 2015

<table>
<thead>
<tr>
<th>COMMUTE MODE</th>
<th>UNITED STATES</th>
<th>CALIFORNIA</th>
<th>LOS ANGELES COUNTY</th>
<th>INGLEWOOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>DROVE ALONE</td>
<td>76.4</td>
<td>73.9</td>
<td>74.1</td>
<td>70.7</td>
</tr>
<tr>
<td>CARPOOL</td>
<td>9.5</td>
<td>10</td>
<td>9.1</td>
<td>12.4</td>
</tr>
<tr>
<td>TRANSIT</td>
<td>5.1</td>
<td>5.2</td>
<td>6.1</td>
<td>7.9</td>
</tr>
<tr>
<td>WORK AT HOME</td>
<td>4.4</td>
<td>5.5</td>
<td>5.4</td>
<td>4.8</td>
</tr>
<tr>
<td>BICYCLE</td>
<td>0.6</td>
<td>1.1</td>
<td>1</td>
<td>0.6</td>
</tr>
<tr>
<td>WALK</td>
<td>2.8</td>
<td>2.7</td>
<td>2.8</td>
<td>2.1</td>
</tr>
<tr>
<td>MOTOCYCLE</td>
<td>0.2</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>OTHER</td>
<td>1</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
</tr>
</tbody>
</table>

ESTIMATED NUMBER OF BICYCLE & PEDESTRIAN TRIPS

**ESTIMATED NUMBER OF DAILY COMMUTE TRIPS BY**

**BICYCLING**

285

**WALKING**

998

**SOURCE:** American Community Survey, 5-year Estimates (2015)

**ESTIMATED INCREASE IN BICYCLE AND PEDESTRIAN TRIPS**

Other cities have achieved a 5% mode split in both bicycling and walking by having ambitious bicycle and pedestrian facilities and programs in place. After the implementation of this Plan, it is anticipated that Inglewood will be able to achieve this over the next 5-10 years.
EXISTING PROGRAMS

The Inglewood Police Department Bike Team has held several bike safety classes for children at various locations in the City. The informal instructions to participants were mainly geared toward educating children how to properly fit their helmets, teaching proper hand signals while riding, and the learning of the rules of the road for safe biking. Officers also touch on safe riding during the instructors’ riders demonstration. Based on prior events, these classes were held at the request of a Council member at their sponsored events.

WAYFINDING SIGNAGE

The City of Inglewood has several bicycle wayfinding signs that complement existing bikeways, but they often lack in frequency of signs and visibility. Both “Bike Lane” (R81) and “Bike Route” (D11-1) signs were identified along streets with existing bikeways.

Many of the existing wayfinding signs provide directionality for motorists to destinations such as the Hollywood Park, The Forum, and the Cemetery. These signs can be enhanced to also provide route directionality for cyclists and pedestrians to include travel time and distances to those destinations.
## PAST EXPENDITURES FOR BICYCLE AND PEDESTRIAN FACILITIES

Table 5.4 below shows expenditures for bicycle and pedestrian facilities in Inglewood for the past five years.

### TABLE 5.4: EXPENDITURES ON BICYCLE AND PEDESTRIAN FACILITIES IN FISCAL YEARS 2013-14 THROUGH 2018-19

<table>
<thead>
<tr>
<th>PROJECT DESCRIPTION</th>
<th>AMOUNT SPENT</th>
<th>PROJECT TYPE</th>
<th>FUNDING SOURCE(S)</th>
<th>FISCAL YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imperial Hwy. Improvement Project – pedestrian safety element included</td>
<td>$200,000</td>
<td>x</td>
<td>Senate Bill (SB) 1</td>
<td>2018-19</td>
</tr>
<tr>
<td>Crenshaw/LAX Light Rail Corridor Transit Stop Improvements - pedestrian safety element included</td>
<td>$5,000</td>
<td>x</td>
<td>Gas Tax</td>
<td>2018-19</td>
</tr>
<tr>
<td>Van Ness Avenue Improvement Project – sidewalk and curb ramps included</td>
<td>$1,638,065</td>
<td>x</td>
<td>Prop A Local Return; Measure R Local Return</td>
<td>2018-19</td>
</tr>
<tr>
<td>Transit Stop Improvements - pedestrian improvements included</td>
<td>$325,000</td>
<td>x</td>
<td>Prop A Local Return</td>
<td>2018-19</td>
</tr>
<tr>
<td>Street Geometry Improvements – crosswalk and stop lines included</td>
<td>$50,000</td>
<td>x</td>
<td>Prop C Local Return</td>
<td>2018-19</td>
</tr>
<tr>
<td>Annual Traffic Signal Improvements – pedestrian detection included</td>
<td>$100,000</td>
<td>x</td>
<td>Measure R Local Return</td>
<td>2018-19</td>
</tr>
<tr>
<td>Street Lighting and Roadway Safety - pedestrian safety element included</td>
<td>$100,000</td>
<td>x</td>
<td>Measure R Local Return</td>
<td>2018-19</td>
</tr>
<tr>
<td>South Prairie Improvement Project - sidewalk and curb ramps included</td>
<td>$55,800</td>
<td>x</td>
<td>Measure R Local Return</td>
<td>2018-19</td>
</tr>
<tr>
<td>Sidewalk and Ramp Rehabilitation - sidewalk and curb ramps included</td>
<td>$8,500</td>
<td>x</td>
<td>Measure R Local Return</td>
<td>2018-19</td>
</tr>
<tr>
<td>Imperial Hwy. Improvement Project - pedestrian safety element included</td>
<td>$1,734,375</td>
<td>x</td>
<td>Gas Tax, Prop C Local Return, Measure R Local Return</td>
<td>2017-18</td>
</tr>
<tr>
<td>Transit Stop Improvements - pedestrian improvements included</td>
<td>$400,000</td>
<td>x</td>
<td>Prop A Local Return</td>
<td>2017-18</td>
</tr>
<tr>
<td>Street Geometry Improvements – crosswalk and stop lines included</td>
<td>$314,489</td>
<td>x</td>
<td>Prop C Local Return</td>
<td>2017-18</td>
</tr>
<tr>
<td>La Tijera Elementary School Project – bicycle lanes, crossing islands, curb extensions, signs, crosswalk improvements</td>
<td>$386,912</td>
<td>x</td>
<td>Prop C Local Return, 223 Transportation Grant</td>
<td>2017-18</td>
</tr>
<tr>
<td>Sidewalk Replacement – sidewalks, curb ramps</td>
<td>$74,424</td>
<td>x</td>
<td>Transportation Development Act (TDA) Article 3</td>
<td>2017-18</td>
</tr>
<tr>
<td>Annual Traffic Signal Improvements – pedestrian detection included</td>
<td>$458,969</td>
<td>x</td>
<td>Measure R Local Return</td>
<td>2017-18</td>
</tr>
<tr>
<td>Street Lighting and Roadway Safety - pedestrian safety element included</td>
<td>$458,969</td>
<td>x</td>
<td>Measure R Local Return</td>
<td>2017-18</td>
</tr>
<tr>
<td>South Prairie Improvement Project - sidewalk and curb ramps included</td>
<td>$368,057</td>
<td>x</td>
<td>Measure R Local Return</td>
<td>2017-18</td>
</tr>
</tbody>
</table>

(continued on next page)
<table>
<thead>
<tr>
<th>PROJECT</th>
<th>AMOUNT SPENT</th>
<th>PROJECT TYPE</th>
<th>FUNDING SOURCE(S)</th>
<th>FISCAL YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sidewalk and Ramp Rehabilitation - sidewalk and curb ramps included</td>
<td>$413,785</td>
<td>PEDESTRIAN</td>
<td>Measure R Local Return</td>
<td>2017-18</td>
</tr>
<tr>
<td>Community Development Block Grant (CBDG) Improvements – sidewalks and curb ramps</td>
<td>$223,048</td>
<td>PEDESTRIAN</td>
<td>CBDG</td>
<td>2016-17</td>
</tr>
<tr>
<td>La Tijera Elementary School Project – bicycle lanes, crossing islands, curb extensions, signs, crosswalk improvements</td>
<td>$12,940</td>
<td>PEDESTRIAN</td>
<td>Prop C Local Return</td>
<td>2016-17</td>
</tr>
<tr>
<td>Imperial Hwy. Improvement Project - pedestrian safety element included</td>
<td>$20,000</td>
<td>PEDESTRIAN</td>
<td>Gas Tax</td>
<td>2016-17</td>
</tr>
<tr>
<td>Street Geometry Improvements – crosswalk and stop lines included</td>
<td>$130,000</td>
<td>PEDESTRIAN</td>
<td>Gas Tax</td>
<td>2016-17</td>
</tr>
<tr>
<td>Annual Traffic Signal Improvements – pedestrian detection included</td>
<td>$253,000</td>
<td>PEDESTRIAN</td>
<td>Measure R Local Return</td>
<td>2016-17</td>
</tr>
<tr>
<td>Sidewalk and Ramp Rehabilitation - sidewalk and curb ramps included</td>
<td>$204,000</td>
<td>PEDESTRIAN</td>
<td>TDA Article 3</td>
<td>2016-17</td>
</tr>
<tr>
<td>Street Lighting and Roadway Safety - pedestrian safety element included</td>
<td>$145,000</td>
<td>PEDESTRIAN</td>
<td>Measure R Local Return</td>
<td>2016-17</td>
</tr>
<tr>
<td>South Prairie Improvement Project - sidewalk and curb ramps included</td>
<td>$221,000</td>
<td>PEDESTRIAN</td>
<td>Measure R Local Return</td>
<td>2016-17</td>
</tr>
<tr>
<td>La Brea Intersection Realignment - pedestrian safety element included</td>
<td>$18,000</td>
<td>PEDESTRIAN</td>
<td>Gas Tax</td>
<td>2016-17</td>
</tr>
<tr>
<td>Sidewalk Replacement</td>
<td>$414,468</td>
<td>PEDESTRIAN</td>
<td>TDA Article 3, CBDG</td>
<td>2015-16</td>
</tr>
<tr>
<td>La Tijera Elementary School Project – bicycle lanes, crossing islands, curb extensions, signs, crosswalk improvements</td>
<td>$59,420</td>
<td>PEDESTRIAN</td>
<td>Prop C Local Return</td>
<td>2015-16</td>
</tr>
<tr>
<td>Street Geometry Improvements – crosswalk and stop lines included</td>
<td>$131,458</td>
<td>PEDESTRIAN</td>
<td>Prop C Local Return</td>
<td>2015-16</td>
</tr>
<tr>
<td>Sidewalk Replacement</td>
<td>$349,835</td>
<td>PEDESTRIAN</td>
<td>TDA Article 3, CBDG</td>
<td>2014-15</td>
</tr>
<tr>
<td>La Tijera Elementary School Project – bicycle lanes, crossing islands, curb extensions, signs, crosswalk improvements</td>
<td>$343,460</td>
<td>PEDESTRIAN</td>
<td>Prop C Local Return, 223 Transportation</td>
<td>2014-15</td>
</tr>
<tr>
<td>Street Geometry Improvements – crosswalk and stop lines included</td>
<td>$123,840</td>
<td>PEDESTRIAN</td>
<td>Prop C Local Return</td>
<td>2014-15</td>
</tr>
</tbody>
</table>
MAINTENANCE POLICIES

The Engineering Division of the City of Inglewood Public Works Department oversees major street and alley reconstruction and overlay improvement projects, and access ramp installations. This includes the following:

- Street Sweeping: Residential streets are swept once a week. Main thoroughfares are swept five days a week, Monday through Friday.
- Sidewalk Repairs: Sidewalk repairs are complemented on a request basis. When a request is received, the location is inspected to determine if grinding or patching can repair the sidewalk, or if removal and replacement is required. There is a waiting period of approximately 30 months from the time the request is received until permanent repairs are completed.
- Bikeways: Bikeways along with the streets. Resurfacing and striping of the streets are done every year on an as-needed basis.
- Landscape maintenance: Landscape maintenance is done every two weeks.
Chapter 5

Bicycling in Inglewood Today

This section describes the existing bikeway network, policies, and amenities that support bicycling in Inglewood. Appendix A: Design Toolbox contains more detail about each type of bikeway. “Bikeway” is a catchall term that describes all types of designated streets or paths for bicyclists. Bikeway types are generally grouped into several types:

- **BIKE PATHS** (CLASS I BIKEWAYS) are paved facilities for the exclusive use of bicyclists, pedestrians, and other non-motorized travel modes.

- **BIKE LANES** (CLASS II BIKEWAYS) are on-street lanes reserved for the exclusive use of bicyclists. Colored pavement may be added to increase visibility of the facility, identify conflict areas and reinforce priority to bicyclists in conflict areas.

- **BUFFERED BIKE LANES** are conventional bike lanes with a designated buffer space separating the bike lane from the adjacent motor vehicle lane and/or parking lane. Colored pavement may be added.

- **BIKE ROUTES** (CLASS III BIKEWAYS) are preferred travel routes for bicyclists on which a separate lane or path is either not feasible or not desirable. Bicyclists and cars share lanes on bike routes (typically the right most lane).

- **BIKE BOULEVARDS** are streets with low motorized traffic volumes as speeds, designated and design to give bicycle travel priority. Like bike routes, bicyclists and cars share the same lanes.

- **PROTECTED BIKE LANE** (CLASS IV BIKEWAYS) provide a physical barrier between the bike lane and other lanes. Protected bike lane treatments may be one-way facilities or two-way facilities. Colored pavement may be added.
EXISTING BIKEWAY NETWORK

The following table lists existing bikeways in Inglewood, their type and extent. Currently only 3.2 miles of bikeway exist. Of these, there are 1.5 miles of Class II bike lanes, and 1.7 miles of Class III bike routes.

<table>
<thead>
<tr>
<th>STREET</th>
<th>FROM</th>
<th>TO</th>
<th>WIDTH (FT)</th>
<th>TO MEDIAN (X)</th>
<th># OF LANES</th>
<th>CENTER TURN LANE/ MEDIAN (C, M)</th>
<th>PARKING (X)</th>
<th>EXISTING BIKEWAYS</th>
<th>LENGTH OF PROPOSED BIKEWAYS (MI.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEST-EAST STREETS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLORENCE AVE.</td>
<td>MANCHESTER BLVD.</td>
<td>WEST BLVD.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Florence Ave.</td>
<td>Locust St.</td>
<td>Hillcrest Blvd.</td>
<td>33-38</td>
<td>x</td>
<td>2</td>
<td>M</td>
<td>8’ bike lanes</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Florence Ave.</td>
<td>Hillcrest Blvd.</td>
<td>Centinela Ave.</td>
<td>36</td>
<td>x</td>
<td>2</td>
<td>M</td>
<td>8’ bike lanes east bound, buffered bike lane westbound</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Florence Ave.</td>
<td>Centinela Ave.</td>
<td>mid-way between West Blvd. and Prairie Ave.</td>
<td>36-44</td>
<td>x</td>
<td>2-3</td>
<td>M</td>
<td>8’ bike lanes</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Florence Ave.</td>
<td>mid-way between West Blvd. and Prairie Ave.</td>
<td>West Blvd.</td>
<td>60</td>
<td></td>
<td>4</td>
<td>C</td>
<td>bike route w/ sharrows</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>76TH ST.</td>
<td>CRENSHAW BLVD.</td>
<td>VAN NESS AVE.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76th St.</td>
<td>Crenshaw Blvd.</td>
<td>Van Ness Ave.</td>
<td>50</td>
<td></td>
<td>2</td>
<td>C</td>
<td>x</td>
<td>bike route w/ sharrows</td>
<td>1.0</td>
</tr>
<tr>
<td>NORTH-SOUTH STREETS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAN NESS AVE.</td>
<td>76TH ST.</td>
<td>IMPERIAL HWY.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van Ness Ave.</td>
<td>81st St.</td>
<td>Manchester Blvd.</td>
<td>62</td>
<td></td>
<td>2</td>
<td>C</td>
<td>x</td>
<td>6’ bike lanes</td>
<td>0.4</td>
</tr>
<tr>
<td>Van Ness Ave.</td>
<td>108th St.</td>
<td>Imperial Hwy.</td>
<td>56</td>
<td></td>
<td>2</td>
<td>C</td>
<td>x</td>
<td>bike route w/ sharrows east side only</td>
<td>0.5</td>
</tr>
<tr>
<td>Locust St.</td>
<td>Florence Ave.</td>
<td>Manchester Blvd.</td>
<td>52</td>
<td></td>
<td>2</td>
<td>x</td>
<td>5’ bike lanes</td>
<td>0.4</td>
<td></td>
</tr>
</tbody>
</table>
EXISTING BIKEWAYS

VAN NESS AVE.
BIKE LANES

76TH ST.
BIKE ROUTE WITH SHARRROWS

FLORENCE AVE.
WESTBOUND BUFFERED BIKE LANES

FLORENCE AVE.
BIKE LANES

EXISTING LINKS TO OTHER TRANSPORT MODES & END-OF-TRIP AMENITIES

Inglewood currently lacks any adequate bicycle parking, showers, and changing lockers throughout the City.

Linking bicycling with public transportation and ridesharing modes greatly expands the range that someone can use a bicycle for. It also boosts the number of people that can use transit because it significantly reduces the “first-mile, last-mile” problem. There is currently one park-and-ride lot located at the southern end of Inglewood just outside of the City boundaries that services the Crenshaw Station. The station provides 12 bike rack spaces and 4 bike lockers.

The City of Inglewood is served by Metro local, Metro Express, Metro Rapid, and the Inglewood I-Line shuttle trolley. All Metro buses have two bike racks in the front. There are no bike racks on the Inglewood shuttle trolley.
WALKING IN INGLEWOOD TODAY

Based on the 2013 California Office of Traffic Safety (OTS) safety rankings of California cities, Inglewood ranked 51th out of 56 cities of similar size for number of pedestrian fatalities and injuries (with 1st being the worst). Between 2009 to 2013, there were 12 pedestrian fatalities and 168 pedestrian injuries reported on California Highway Patrol Statewide Integrated Traffic Records System (SWITRS).

While Inglewood has a comprehensive network of sidewalks, there are opportunities for improvement to create a more pedestrian-friendly environment. This includes, but is not limited to:

- bus stops and curb ramps that are accessible by people with disabilities
- curb ramps that are located at every crossing location
- crosswalks that are clearly painted and are continental-style crosswalks
- pedestrian countdown signals and accessible pedestrians signals (APS) that are on every signal-controlled intersection
- use of leading pedestrian intervals in high pedestrian areas to help reduce conflicts between turning vehicles and pedestrians

Community observations about the existing pedestrian environment were documented from the Downtown Walk Audit described in Chapter 7: Proposed Pedestrian Facilities Plan.
THIS PAGE IS LEFT INTENTIONALLY BLANK.
The purpose of the Bicycle Facilities Plan is to provide a network of safe and efficient bikeways and amenities. The Plan strives to improve mobility, provide connections to important destinations, enhance links to other modes of transportations, plan for bicycle amenities, and serve bicyclists of all ages and abilities. Recommendations and design guidance was created through the active participation of the public stakeholders, Technical Advisory Committee (TAC), and City staff, as well as a comprehensive analysis of the existing local and regional bicycle network.
This Plan proposes additional bicycle facilities that aim to entice more people to cycle, and to improve the safety, comfort and convenience for people on bicycles.

In order to plan facilities that accomplish these goals, it is useful to examine the market for bicyclists and potential bicyclists. Roger Geller, the Bicycle Coordinator for the City of Portland, Oregon, has defined the bicycling market in a way that many planners across the United States now use. Geller suggests that bicyclists and potential bicyclists fall into the following categories:

- **STRONG AND FEARLESS**: These are expert riders that will ride on just about any street anywhere whether any designated bikeway exists or not. This category likely represents a very small portion of the population. In Portland, Geller estimates that this group is less than 1% of the population. (Jennifer Dill, Nathan McNeil, “Four Types of Cyclists”, Working Paper, Portland State University, 2012.)

- **ENTHUSESED AND CONFIDENT**: These cyclists want to ride more. They prefer riding on paths, streets with bike lanes or quiet residential streets. They will bicycle more as more bike lanes and paths are put in. This is likely to be a small population, but much larger than the Strong and Fearless. Geller estimates this group to be about 7% of the population in Portland. (Dill, McNeil)

- **INTERESTED BUT CONCERNED**: These people like the idea of bicycling, but only feel comfortable on paths, and bike lanes with a higher level of separation from motor vehicle traffic than basic bike lanes. This is likely the majority of people. Surveys have shown many women to fall into this category. Geller estimates this group to be about 60% of the population in Portland. (Dill, McNeil)

- **NO WAY, NO HOW**: These people aren’t interested in bicycling under any conditions. With excellent facilities and enough people bicycling to create a strong culture of bicycling for every day needs, some of these people may reconsider. But they are the last market for bicycling.

Given these bicyclist types, the City aims to improve facilities for the “Enthused and Confident”, but will concentrate efforts on the “Interested but Concerned”. So in order to attract more people to bicycling, the City needs to expand beyond basic bike lanes. The City needs more bike paths, protected bike lanes, buffered bike lanes and bike boulevards. Colored bike lanes and wider bike lanes should go a long way to get the “Enthused and Confident” to ride more. This is the approach of this Plan. At the same time, the City doesn’t want to create situations where the “Strong and Fearless” feel impeded. Their right to use any street should remain.

This Chapter proposes new bikeways, bicycle parking, links to transit and ridesharing, and more end-of-trip facilities.
PROPOSED BIKEWAYS

In total, this Plan proposes 56.7 miles of new bikeways. Of these the plan recommends: 1.1 miles of bike paths, 9.2 miles of bike lanes, 30.8 miles of bike routes, 9.6 miles of protected bike lanes. These total over 56.7 miles because some streets have a mix such as a bike lane on one side, and sharrow on the other. The bike lanes include regular striped lanes, colored bike lanes and buffered bike lanes. The bike routes include those with sharrow, some with greenback sharrow and some bike boulevards. Table 6.1 and Map 6.1 illustrate these facilities.

MAP 6.1 PROPOSED BIKEWAYS

PROPOSED BIKEWAYS
### TABLE 6.1 PROPOSED BIKEWAY NETWORK

#### EXISTING CONDITIONS

<table>
<thead>
<tr>
<th>STREET</th>
<th>FROM</th>
<th>TO</th>
<th>WIDTH</th>
<th>MEDIAN</th>
<th># LAKES</th>
<th>CENTER TURN LANE/MEDIAN</th>
<th>PARKING</th>
<th>EXISTING BIKEWAYS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>WEST-EAST STREETS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairview Blvd</td>
<td>Western city limit/ La Cienega Blvd.</td>
<td>Hyde Park Blvd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairview Blvd</td>
<td>Western city limit/ La Cienega Blvd.</td>
<td>Overhill Dr.</td>
<td>50</td>
<td>2</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairview Blvd</td>
<td>Overhill Dr.</td>
<td>Hyde Park Blvd.</td>
<td>42</td>
<td>2</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Tijera Blvd.</td>
<td>North City Limit (64th St.)</td>
<td>South City Limit (La Cienega Blvd.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Tijera Blvd.</td>
<td>North City Limit (64th St.)</td>
<td>Fairview Blvd.</td>
<td>24-40’</td>
<td>2</td>
<td>(one-way)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Tijera Blvd.</td>
<td>Fairview Blvd.</td>
<td>South City Limit (La Cienega Blvd.)</td>
<td>36’</td>
<td>2</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centinela Ave.</td>
<td>La Cienega Blvd.</td>
<td>Florence Ave.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centinela Ave.</td>
<td>La Cienega Blvd.</td>
<td>Beach Ave.</td>
<td>80</td>
<td>4</td>
<td>C</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Centinela Ave.</td>
<td>Beach Ave.</td>
<td>Inglewood Ave.</td>
<td>77</td>
<td>4</td>
<td>C</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Centinela Ave.</td>
<td>Inglewood Ave.</td>
<td>Eucalyptus Ave.</td>
<td>83</td>
<td>4</td>
<td>C</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Centinela Ave.</td>
<td>Eucalyptus Ave.</td>
<td>La Brea Ave.</td>
<td>88</td>
<td>4</td>
<td>C</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Centinela Ave.</td>
<td>La Brea Ave.</td>
<td>Market St.</td>
<td>83</td>
<td>4</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centinela Ave.</td>
<td>Market St.</td>
<td>Warren Ln.</td>
<td>70</td>
<td>4</td>
<td>C</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Centinela Ave.</td>
<td>Warren Ln.</td>
<td>Florence Ave.</td>
<td>70</td>
<td>4</td>
<td>C</td>
<td></td>
<td>west side only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyde Park Blvd.</td>
<td>La Cienega Blvd.</td>
<td>West Blvd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyde Park Blvd.</td>
<td>La Cienega Blvd.</td>
<td>Glenway Dr.</td>
<td>28</td>
<td>2</td>
<td></td>
<td>north side only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyde Park Blvd.</td>
<td>Glenway Dr.</td>
<td>Edgewood St.</td>
<td>36</td>
<td>2</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyde Park Blvd.</td>
<td>Edgewood St.</td>
<td>Centinela Ave.</td>
<td>48</td>
<td>2</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyde Park Blvd.</td>
<td>Centinela Ave.</td>
<td>67th St.</td>
<td>30</td>
<td>2</td>
<td></td>
<td>north side only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyde Park Blvd.</td>
<td>67th St.</td>
<td>Hyde Park Pl.</td>
<td>28</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyde Park Blvd.</td>
<td>Hyde Park Pl.</td>
<td>Fairview Blvd.</td>
<td>42</td>
<td>2</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyde Park Blvd.</td>
<td>Fairview Blvd.</td>
<td>West Blvd.</td>
<td>48</td>
<td>2</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beach Ave.</td>
<td>North City Limit (64th St.)</td>
<td>Edward Vincent Jr. Park</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beach Ave.</td>
<td>North City Limit (64th St.)</td>
<td>Centinela Ave.</td>
<td>50</td>
<td>2</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beach Ave.</td>
<td>Centinela Ave.</td>
<td>Plymouth St.</td>
<td>40</td>
<td>2</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beach Ave.</td>
<td>Plymouth St.</td>
<td>Venice Way</td>
<td>36</td>
<td>2</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beach Ave.</td>
<td>Venice Way</td>
<td>Eucalyptus Ave.</td>
<td>40</td>
<td>2</td>
<td></td>
<td></td>
<td>x</td>
<td>consider removing center line, check ADTs</td>
<td></td>
</tr>
<tr>
<td>Beach Ave.</td>
<td>Eucalyptus Ave.</td>
<td>La Brea Ave.</td>
<td>36</td>
<td>2</td>
<td></td>
<td></td>
<td>x</td>
<td>consider removing center line, check ADTs</td>
<td></td>
</tr>
<tr>
<td>Beach Ave.</td>
<td>La Brea Ave.</td>
<td>Edgewood St.</td>
<td>40</td>
<td>2</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIKE PATH</td>
<td>BOULEVARD</td>
<td>BIKE LANE</td>
<td>BIKE ROUTES W/ SHARRIOWS</td>
<td>COLORED BIKE LANE</td>
<td>BUFFERED BIKE LANE</td>
<td>DOUBLE BUFFERED BIKE LANE</td>
<td>BIKE ROUTE W/ GREENBACK SHARRIOWS</td>
<td>ONE WAY PROTECTED BIKE LANE</td>
<td>TWO WAY PROTECTED BIKE LANE</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

continued
### EXISTING CONDITIONS

<table>
<thead>
<tr>
<th>STREET</th>
<th>FROM</th>
<th>TO</th>
<th>WIDTH</th>
<th># LANES</th>
<th>CENTER TURN LANE/MEDIAN</th>
<th>PARKING</th>
<th>EXISTING BIKEWAYS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beach Ave.</td>
<td>Edgewood St.</td>
<td>Edward Vicent Jr. Park/Centinela Ave.</td>
<td>35</td>
<td>2</td>
<td>south side only</td>
<td></td>
<td></td>
<td>parking switches from north side during parking restriction to south side</td>
</tr>
<tr>
<td>Edward Vicent Jr. Park</td>
<td>Centinela Ave.</td>
<td>E. Pkwy</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edward Vicent Jr. Park</td>
<td>Centinela Ave.</td>
<td>E. Pkwy</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Option to remove &quot;no bikes&quot; policy in park and route bikes through existing park path, or create new bike path through path. Need to create bike path entrance at Beach Ave. on the west end, and construct bike path through parking lot on the east end to connect to 68th St.</td>
</tr>
<tr>
<td>68th St.</td>
<td>E. Pkwy</td>
<td>West Blvd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>create gap through diverter at Gay St.</td>
</tr>
<tr>
<td>68th St.</td>
<td>E. Pkwy</td>
<td>West Blvd.</td>
<td>30</td>
<td>2</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Florence Ave.</td>
<td>Manchester Blvd.</td>
<td>West Blvd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Florence Ave.</td>
<td>Manchester Blvd.</td>
<td>405 Fwy.</td>
<td>51</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Florence Ave.</td>
<td>405 Fwy.</td>
<td>Ash Ave.</td>
<td>56</td>
<td>4</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Florence Ave.</td>
<td>Ash Ave.</td>
<td>Fir Ave./Ivy Ave.</td>
<td>24</td>
<td>x</td>
<td>2</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Florence Ave.</td>
<td>Fir Ave./Ivy Ave.</td>
<td>La Brea Ave.</td>
<td>60</td>
<td>4</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Florence Ave.</td>
<td>La Brea Ave.</td>
<td>Market St.</td>
<td>26-36</td>
<td>x</td>
<td>2</td>
<td>M</td>
<td></td>
<td>36' EB; 26' WB; 2 lanes and right turn lane EB</td>
</tr>
<tr>
<td>Florence Ave.</td>
<td>Market St.</td>
<td>Locust St.</td>
<td>34-37</td>
<td>x</td>
<td>2</td>
<td>M</td>
<td></td>
<td>37' EB; 34' WB</td>
</tr>
<tr>
<td>Florence Ave.</td>
<td>Locust St.</td>
<td>Hillcrest Blvd.</td>
<td>33-38</td>
<td>x</td>
<td>2</td>
<td>M</td>
<td></td>
<td>8' bike lane; 38' EB 33' WB</td>
</tr>
<tr>
<td>Florence Ave.</td>
<td>Hillcrest Blvd.</td>
<td>Centinela Ave.</td>
<td>36</td>
<td>x</td>
<td>2</td>
<td>M</td>
<td></td>
<td>8' bike lane east bound, buffered bike lane westbound</td>
</tr>
<tr>
<td>Florence Ave.</td>
<td>Centinela Ave.</td>
<td>mid-way between West Blvd. and Prairie Ave.</td>
<td>36-44</td>
<td>x</td>
<td>2-3</td>
<td>M</td>
<td></td>
<td>8' bike lane 2 lanes EB, 3 lanes WB</td>
</tr>
<tr>
<td>Florence Ave.</td>
<td>mid-way between West Blvd. and Prairie Ave.</td>
<td>West Blvd.</td>
<td>60</td>
<td>4</td>
<td>C</td>
<td></td>
<td>bike route w/ sharrows consider removing center turn lane (except at the intersection) to accommodate bikeways</td>
<td></td>
</tr>
<tr>
<td>76th St.</td>
<td>Crenshaw Blvd.</td>
<td>Van Ness Ave.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76th St.</td>
<td>Crenshaw Blvd.</td>
<td>Van Ness Ave.</td>
<td>50</td>
<td>2</td>
<td>C</td>
<td>x</td>
<td>bike route w/ sharrows roundabout at 5th &amp; Van Ness</td>
<td></td>
</tr>
<tr>
<td>Regent St.</td>
<td>West end of Regent St.</td>
<td>Prairie Ave.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regent St.</td>
<td>West end of Regent St.</td>
<td>Oak St.</td>
<td>52</td>
<td>2</td>
<td>C</td>
<td></td>
<td>Regent St. does not connect to Florence Ave.; Commercial property (Prestigio Custom Furniture) is located between Florence Ave. and Regent St.</td>
<td></td>
</tr>
<tr>
<td>Regent St.</td>
<td>Oak St.</td>
<td>Fir Ave.</td>
<td>65</td>
<td>2</td>
<td></td>
<td>angled parking both sides</td>
<td>switch to reverse-in angled parking</td>
<td></td>
</tr>
<tr>
<td>Regent St.</td>
<td>Fir Ave.</td>
<td>Grevillea Ave.</td>
<td>56</td>
<td>4</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regent St.</td>
<td>Grevillea Ave.</td>
<td>La Brea Ave.</td>
<td>56</td>
<td>2</td>
<td>C</td>
<td>north side only</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## PROPOSED BIKEWAYS

<table>
<thead>
<tr>
<th>BIKE PATH</th>
<th>BIKE BOULEVARD</th>
<th>BIKE LAKES</th>
<th>BIKE ROUTES W/ SHARROWS</th>
<th>COLORED BIKE LAKES</th>
<th>DOUBLE BUFFERED BIKE LAKES</th>
<th>TWO-WAY PROTECTED BIKE LAKES</th>
<th>LENGTH OF PROPOSED BIKEWAYS (MI.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.6</td>
</tr>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Option 2</td>
<td>5'</td>
<td>north side</td>
<td>south side</td>
<td>0.1</td>
<td></td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>Option 2</td>
<td>5'</td>
<td>north side</td>
<td>south side</td>
<td>1.0</td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>repaint</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>sharrows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>option 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>option 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>option 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>option 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
</tbody>
</table>

*This bike infrastructure requires additional traffic analysis and/or parking analysis to proceed because it proposes a road diet and/or elimination of parking. Traffic or parking analysis to be conducted after the NFL stadium and NBA arena are both in operation.*
## EXISTING CONDITIONS

<table>
<thead>
<tr>
<th>STREET</th>
<th>FROM</th>
<th>TO</th>
<th>WIDTH</th>
<th>TO MEDIAN</th>
<th># LANES</th>
<th>CENTER TURN LANE/MEDIAN</th>
<th>PARKING</th>
<th>EXISTING BIKEWAYS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regent St.</td>
<td>La Brea Ave.</td>
<td>Prairie Ave.</td>
<td>56</td>
<td>2</td>
<td>C</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queen St.</td>
<td>Fir Ave.</td>
<td>Grevillea Ave.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queen St.</td>
<td>Fir Ave.</td>
<td>Grevillea Ave.</td>
<td>35</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kelso St.</td>
<td>Ash Ave.</td>
<td>Prairie Ave.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kelso St.</td>
<td>Ash Ave.</td>
<td>Eucalyptus Ave.</td>
<td>32</td>
<td>2</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kelso St.</td>
<td>Eucalyptus Ave.</td>
<td>Grevillea Ave.</td>
<td>32</td>
<td>2</td>
<td></td>
<td>north side only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kelso St.</td>
<td>Grevillea Ave.</td>
<td>Inglewood Transit Center</td>
<td>56</td>
<td>2</td>
<td></td>
<td>angled parking north side; parallel parking south side</td>
<td></td>
<td></td>
<td>Consider bike path through Transit Center to connect to Hillcrest Blvd.; switch to reverse-in angled parking</td>
</tr>
<tr>
<td>Kelso St.</td>
<td>Hillcrest Blvd.</td>
<td>mid-way to Spruce Ave.</td>
<td>48</td>
<td>2</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>Need well-marked crosswalks to connect across Market St. and Hillcrest Blvd.</td>
</tr>
<tr>
<td>Kelso St.</td>
<td>mid-way to Spruce Ave.</td>
<td>Myrtle Ave.</td>
<td>40</td>
<td>2</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kelso St.</td>
<td>Myrtle Ave.</td>
<td>Prairie Ave.</td>
<td>38</td>
<td>2</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manchester Blvd.</td>
<td>Western city limit</td>
<td>Hindry Ave</td>
<td>80</td>
<td>4</td>
<td>C</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manchester Blvd.</td>
<td>Prairie Ave.</td>
<td>Kareem Ct.</td>
<td>38-39</td>
<td>x</td>
<td>3</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manchester Blvd.</td>
<td>Kareem Ct.</td>
<td>West Blvd.</td>
<td>38</td>
<td>x</td>
<td>3</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manchester Blvd.</td>
<td>West Blvd.</td>
<td>Crenshaw Dr./ Brianwood Ln.</td>
<td>33-38</td>
<td>x</td>
<td>2-3</td>
<td>M</td>
<td></td>
<td>3 lanes EB; 2 lanes WB</td>
<td></td>
</tr>
<tr>
<td>Manchester Blvd.</td>
<td>Crenshaw Dr./ Brianwood Ln.</td>
<td>12th St.</td>
<td>33-37</td>
<td>x</td>
<td>2</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manchester Blvd.</td>
<td>12th St.</td>
<td>Van Ness Ave.</td>
<td>33-34</td>
<td>x</td>
<td>2</td>
<td>M</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pincay Dr.</td>
<td>Prairie Ave.</td>
<td>Van Ness Ave.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pincay Dr.</td>
<td>Prairie Ave.</td>
<td>Crenshaw Blvd.</td>
<td>64</td>
<td>4</td>
<td>C</td>
<td>parking permitted on on the south side just west of Renaissance Gateway to Crenshaw Blvd.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90th St.</td>
<td>Crenshaw Blvd.</td>
<td>Van Ness Ave.</td>
<td>36</td>
<td>2</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbor Vitae St.</td>
<td>Portal Ave.</td>
<td>Prairie Ave.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbor Vitae St.</td>
<td>Portal Ave.</td>
<td>Aviation Blvd.</td>
<td>57</td>
<td>4</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbor Vitae St.</td>
<td>Aviation Blvd.</td>
<td>Isis Ave.</td>
<td>54</td>
<td>4</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbor Vitae St.</td>
<td>Isis Ave.</td>
<td>Ash Ave.</td>
<td>56</td>
<td>4</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbor Vitae St.</td>
<td>Ash Ave.</td>
<td>La Brea Ave.</td>
<td>56</td>
<td>2</td>
<td>C</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbor Vitae St.</td>
<td>La Brea Ave.</td>
<td>Prairie Ave.</td>
<td>46</td>
<td>2</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80th St./81st St.</td>
<td>West Blvd.</td>
<td>Van Ness Ave.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
81

LENGTH OF
PROPOSED
BIKEWAYS
(MI.)

TWO-WAY
PROTECTED
BIKE LANES

ONE-WAY
PROTECTED
BIKE LANES

BIKE
ROUTE W/
GREENBACK
SHARROWS

DOUBLE
BUFFERED
COLORED
BIKE LANES

DOUBLE
BUFFERED
BIKE LANES

BUFFERED
COLORED
BIKE LANES

BUFFERED
BIKE LANES

Option 2
6'

COLORED
BIKE LANES

BIKE LANES

Option 1

BIKE
ROUTES W/
SHARROWS

BIKE
BOULEVARD

BIKE PATH

PROPOSED BIKEWAYS

0.5
2.3

6'

2.3
1.5

Option 1

Option 2

0.5

Option 1

Option 2

0.3

Option 1

Option 2

0.1

Option 1

Option 2
7'

Option 3

0.05

Option 1

Option 2

0.2

Option 1

Option 2

0.3
1.9
x

0.4

Option 2*

Option 1*

0.2

Option 2*

Option 1*

0.3

Option 2*

Option 1*

0.2

Option 2*

Option 1*

0.1

6'-7'*

0.7
1.5

Option 2
north side

Option 1
w/
removal
off short
stretch
of onstreet
parking

1.0

CHAPTER 6

Option 2
south
side

x

0.5
2.0
x

0.1

x

0.1

x

0.4

6'
6'

0.9
0.5
1.1

*This bike infrastructure requires additional traffic analysis and/or parking analysis to proceed because it proposes a road diet and/
or elimination of parking. Traffic or parking analysis to be conducted after the NFL stadium and NBA arena are both in operation.

continued


### EXISTING CONDITIONS

<table>
<thead>
<tr>
<th>STREET</th>
<th>FROM</th>
<th>TO</th>
<th>WIDTH</th>
<th># LANES</th>
<th>CENTER TURN LANE/ MEDIAN</th>
<th>PARKING</th>
<th>EXISTING BIKEWAYS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>80th St.</td>
<td>West Blvd.</td>
<td>Maitland Ave.</td>
<td>36</td>
<td>2</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Ave.</td>
<td>Maitland Ave.</td>
<td>81st St.</td>
<td>36</td>
<td>2</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81st St.</td>
<td>2nd Ave.</td>
<td>Van Ness Ave.</td>
<td>36</td>
<td>2</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104th St.</td>
<td>West of Prairie Ave.</td>
<td>Van Ness Ave.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104th St.</td>
<td>West of Prairie Ave.</td>
<td>Yukon Ave.</td>
<td>30</td>
<td>2</td>
<td>north side only</td>
<td></td>
<td></td>
<td>consider bike boulevard along 104th St.</td>
</tr>
<tr>
<td>104th St.</td>
<td>Yukon Ave.</td>
<td>Crenshaw Blvd.</td>
<td>40</td>
<td>2</td>
<td>x</td>
<td></td>
<td></td>
<td>consider bike boulevard along 104th St.</td>
</tr>
<tr>
<td>104th St.</td>
<td>Crenshaw Blvd.</td>
<td>Van Ness Ave.</td>
<td>36</td>
<td>2</td>
<td>x</td>
<td></td>
<td></td>
<td>consider bike boulevard along 104th St.</td>
</tr>
<tr>
<td>111th St./Thoreau St.</td>
<td>Prairie Ave.</td>
<td>Van Ness Ave.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111th St.</td>
<td>Prairie Ave.</td>
<td>Crenshaw Blvd.</td>
<td>30</td>
<td>2</td>
<td>north side only</td>
<td></td>
<td></td>
<td>bike route sign at Lemonli Ave. (only saw 1 sign)</td>
</tr>
<tr>
<td>Thoreau St.</td>
<td>Crenshaw Blvd.</td>
<td>Spinning Ave.</td>
<td>36</td>
<td>2</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spinning Ave.</td>
<td>Thoreau St.</td>
<td>11th St.</td>
<td>36</td>
<td>2</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111th St.</td>
<td>Spinning Ave.</td>
<td>Van Ness Ave.</td>
<td>36</td>
<td>2</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imperial Hwy.</td>
<td>Prairie Ave.</td>
<td>Van Ness Ave.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imperial Hwy.</td>
<td>Prairie Ave.</td>
<td>Lemoli Ave.</td>
<td>78</td>
<td>6</td>
<td>C</td>
<td>#3 C/M</td>
<td>Century Blvd Plans (North to South: 12', 10', 10', 13' median, 10', 10', 11')</td>
<td></td>
</tr>
<tr>
<td>Imperial Hwy.</td>
<td>Lemoli Ave.</td>
<td>Simms Ave.</td>
<td><em>32 north side; 30 south side</em></td>
<td>3</td>
<td>C/M</td>
<td>#3 lanes; peak hour parking restrictions both sides</td>
<td>Century Blvd Plans (North to South: 12', 10', 10', 13' median, 10', 10', 10')</td>
<td></td>
</tr>
<tr>
<td>Imperial Hwy.</td>
<td>Simms Ave.</td>
<td>Crenshaw Blvd.</td>
<td><em>32 north side; 30 south side</em></td>
<td>3</td>
<td>C/M</td>
<td>#3 WB lane; peak hour restrictions north side; no parking south side</td>
<td>Century Blvd Plans (North to South: 11', 10', 10', 13' median, 10', 10', 11')</td>
<td></td>
</tr>
<tr>
<td>Imperial Hwy.</td>
<td>Crenshaw Blvd.</td>
<td>Spinning Ave.</td>
<td>31</td>
<td>3</td>
<td>C/M</td>
<td>Century Blvd Plans (North to South: 11', 10', 10', 13' median, 10', 10', 11')</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imperial Hwy.</td>
<td>Spinning Ave.</td>
<td>Van Ness Ave.</td>
<td>32</td>
<td>3</td>
<td>C/M</td>
<td>Century Blvd Plans (North to South: 12', 10', 10', 12' median, 11', 10', 11')</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIKE PATH</td>
<td>BIKE BOULEVARD</td>
<td>BIKE LANES</td>
<td>BIKE ROUTES W/ SHARROWS</td>
<td>COLORED BIKE LANES</td>
<td>BUFFERED BIKE LANES</td>
<td>DOUBLE BUFFERED BIKE LANES</td>
<td>BIKE PATH W/ GREENBACK SHARROWS</td>
<td>ONE-WAY PROTECTED BIKE LANES</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>-------------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option 1*</td>
<td>reduce to 2 lanes w/ parking on the north side</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option 1*</td>
<td>reduce to 2 lanes w/ parking on the north side</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option 1*</td>
<td>reduce to 2 lanes w/ parking on the north side</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option 4</td>
<td>reduce to 2 lanes each direction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option 3</td>
<td>reduce to 2 lanes each direction*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option 3</td>
<td>reduce to 2 lanes each direction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*This bike infrastructure requires additional traffic analysis and/or parking analysis to proceed because it proposes a road diet and/or elimination of parking. Traffic or parking analysis to be conducted after the NFL stadium and NBA arena are both in operation.
## EXISTING CONDITIONS

<table>
<thead>
<tr>
<th>STREET</th>
<th>FROM</th>
<th>TO</th>
<th>WIDTH</th>
<th>TO MEDIAN</th>
<th># LANES</th>
<th>CENTER/TURN LANE/MEDIAN</th>
<th>PARKING</th>
<th>EXISTING BIKEWAYS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aviation Blvd.</td>
<td>Manchester Blvd.</td>
<td>Arbor Vitae St.</td>
<td>55</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>east side only</td>
</tr>
<tr>
<td>Aviation Blvd.</td>
<td>Manchester Blvd.</td>
<td>Arbor Vitae St.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Cienega Blvd.</td>
<td>North City Limit (s/o Hyde Park Blvd./Industrial Ave.)</td>
<td>Century Blvd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Cienega Blvd.</td>
<td>North City Limit (s/o Hyde Park Blvd./Industrial Ave.)</td>
<td>Florence Ave.</td>
<td>25-38</td>
<td>2-3</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td>25’ NB, 38’ SB; Street splits into two separate freeway overpass streets</td>
</tr>
<tr>
<td>La Cienega Blvd.</td>
<td>Florence Ave.</td>
<td>Manchester Blvd.</td>
<td>67-68</td>
<td>5</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>2 lanes NB, 3 lanes SB</td>
</tr>
<tr>
<td>La Cienega Blvd.</td>
<td>Manchester Blvd.</td>
<td>Olive St.</td>
<td>68</td>
<td>5</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>2 lanes NB, 3 lanes SB</td>
</tr>
<tr>
<td>La Cienega Blvd.</td>
<td>Olive St.</td>
<td>200’ N of Car Max Way</td>
<td>61</td>
<td>4</td>
<td>C/M</td>
<td></td>
<td></td>
<td></td>
<td>Painted median, not a physical median</td>
</tr>
<tr>
<td>La Cienega Blvd.</td>
<td>200’ N of Car Max Way</td>
<td>Car Max Way</td>
<td>63</td>
<td>4</td>
<td>C/M</td>
<td></td>
<td></td>
<td></td>
<td>Painted median, not a physical median</td>
</tr>
<tr>
<td>La Cienega Blvd.</td>
<td>Car Max Way</td>
<td>Hillcrest Blvd.</td>
<td>24-30</td>
<td>x</td>
<td>2</td>
<td>M</td>
<td></td>
<td></td>
<td>24’ NB, 30’ SB</td>
</tr>
<tr>
<td>La Cienega Blvd.</td>
<td>Hillcrest Blvd.</td>
<td>Arbor Vitae St.</td>
<td>56</td>
<td>4</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Cienega Blvd.</td>
<td>Arbor Vitae St.</td>
<td>405 Fwy. On/Off Ramps</td>
<td>61</td>
<td>4</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Cienega Blvd.</td>
<td>405 Fwy. On/Off Ramps</td>
<td>Century Blvd.</td>
<td>36</td>
<td>x</td>
<td>3</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oak St.</td>
<td>Regent St.</td>
<td>98th St.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oak St.</td>
<td>Regent St.</td>
<td>Arbor Vitae St.</td>
<td>36</td>
<td>2</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oak St./Felton St.</td>
<td>Arbor Vitae St.</td>
<td>95th St.</td>
<td>36</td>
<td>2</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Felton St.</td>
<td>95th St.</td>
<td>98th St.</td>
<td>30</td>
<td>2</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>mountable/rolled curb</td>
</tr>
<tr>
<td>Inglewood Ave.</td>
<td>Florence Ave.</td>
<td>Arbor Vitae St.</td>
<td>40-42’</td>
<td>2</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inglewood Ave.</td>
<td>Arbor Vitae St.</td>
<td>South of Century Blvd.</td>
<td>50</td>
<td>2</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus Ave.</td>
<td>64th St.</td>
<td>South of Century Blvd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus Ave.</td>
<td>64th St.</td>
<td>Juniper St.</td>
<td>30</td>
<td>2</td>
<td>x</td>
<td>east side only</td>
<td></td>
<td>No parking between Hypo Park &amp; Juniper</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus Ave.</td>
<td>Juniper St.</td>
<td>Oak St.</td>
<td>48</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus Ave.</td>
<td>Oak St.</td>
<td>Florence Ave.</td>
<td>48</td>
<td>2</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### PROPOSED BIKEWAYS

<table>
<thead>
<tr>
<th>BIKE PATH</th>
<th>BIKE BOULEVARD</th>
<th>BIKE LANES</th>
<th>BIKE ROUTES W/ SHARROWS</th>
<th>COLORED BIKE LANES</th>
<th>BUFFERED BIKE LANES</th>
<th>DOUBLE Buffered BIKE LANES</th>
<th>BIKE ROUTE W/ GREENBACK SHARROWS</th>
<th>ONE WAY PROTECTED BIKE LANES</th>
<th>TWO WAY PROTECTED BIKE LANES</th>
<th>LENGTH OF PROPOSED BIKEWAYS (MI.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aviation Blvd.</td>
<td>Manchester Blvd.</td>
<td>Arbor Vitae St.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>east side</td>
</tr>
<tr>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Option 2</td>
</tr>
<tr>
<td></td>
<td>Option 2 5.5&quot;</td>
</tr>
<tr>
<td></td>
<td>Option 2 6.5&quot;</td>
</tr>
<tr>
<td></td>
<td>Option 2</td>
</tr>
<tr>
<td></td>
<td>Option 2</td>
</tr>
<tr>
<td></td>
<td>Option 2 5.5&quot;</td>
</tr>
<tr>
<td></td>
<td>Option 2 6&quot;</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>east side</td>
</tr>
<tr>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

*This bike infrastructure requires additional traffic analysis and/or parking analysis to proceed because it proposes a road diet and/or elimination of parking. Traffic or parking analysis to be conducted after the NFL stadium and NBA arena are both in operation.
### EXISTING CONDITIONS

<table>
<thead>
<tr>
<th>STREET</th>
<th>FROM</th>
<th>TO</th>
<th>WIDTH</th>
<th>TO MEDIAN</th>
<th># LANES</th>
<th>CENTER/TURN LANE/MEDIAN</th>
<th>PARKING</th>
<th>EXISTING BIKEWAYS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus Ave.</td>
<td>Florence Ave.</td>
<td>Regent St.</td>
<td>36</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus Ave.</td>
<td>Regent St.</td>
<td>South of Century Blvd. (City Limit)</td>
<td>36</td>
<td>2</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grevillea Ave.</td>
<td>Manchester Blvd.</td>
<td>104th St.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grevillea Ave.</td>
<td>Manchester Blvd.</td>
<td>Nutwood St.</td>
<td>58</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>90 degree on east side (side closest to school), parallel on west side</td>
<td>90 degree parking stall measures 15'</td>
</tr>
<tr>
<td>Grevillea Ave.</td>
<td>Nutwood St.</td>
<td>Kelso St.</td>
<td>48</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grevillea Ave.</td>
<td>Kelso St.</td>
<td>Hilcrest Blvd.</td>
<td>40</td>
<td>2</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td>Bike route w/ sharrow on school side</td>
</tr>
<tr>
<td>Grevillea Ave.</td>
<td>Hilcrest Blvd.</td>
<td>Arbor Vitae St.</td>
<td>36</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>west side only</td>
</tr>
<tr>
<td>Grevillea Ave.</td>
<td>Arbor Vitae St.</td>
<td>Century Blvd.</td>
<td>36</td>
<td>2</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grevillea Ave.</td>
<td>Century Blvd.</td>
<td>104th St.</td>
<td>30</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>west side only</td>
</tr>
<tr>
<td>Locust St.</td>
<td>Florence Ave.</td>
<td>Hilcrest Blvd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locust St.</td>
<td>Florence Ave.</td>
<td>Manchester Blvd.</td>
<td>52</td>
<td>2</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td>5' bike lanes</td>
</tr>
<tr>
<td>Locust St.</td>
<td>Manchester Blvd.</td>
<td>Hilcrest Blvd.</td>
<td>52</td>
<td>2</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hillcrest Blvd.</td>
<td>Florence Ave.</td>
<td>Aviation Blvd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hillcrest Blvd.</td>
<td>Florence Ave.</td>
<td>St. John Pt.</td>
<td>68</td>
<td>2</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hillcrest Blvd.</td>
<td>St. John Pt.</td>
<td>Queen St.</td>
<td>24-25</td>
<td>x</td>
<td>1</td>
<td>M</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hillcrest Blvd.</td>
<td>Queen St.</td>
<td>Manchester Blvd.</td>
<td>68</td>
<td>4</td>
<td>C</td>
<td>east side only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hillcrest Blvd.</td>
<td>Manchester Blvd.</td>
<td>Grevillea Ave.</td>
<td>32</td>
<td>x</td>
<td>2</td>
<td>M</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hillcrest Blvd.</td>
<td>Grevillea Ave.</td>
<td>Inglewood Ave.</td>
<td>42</td>
<td>2</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hillcrest Blvd.</td>
<td>Inglewood Ave.</td>
<td>405 Fwy. Bridge</td>
<td>36</td>
<td>2</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hillcrest Blvd.</td>
<td>405 Fwy. Bridge</td>
<td>La Cienega Blvd.</td>
<td>36</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hillcrest Blvd.</td>
<td>La Cienega Blvd.</td>
<td>Glasgow Ave.</td>
<td>40</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hillcrest Blvd.</td>
<td>Glasgow Ave.</td>
<td>Aviation Blvd.</td>
<td>40</td>
<td>2</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhill Dr.</td>
<td>North city limit/midway between 63rd St. to 64th St.</td>
<td>Fairview Blvd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhill Dr.</td>
<td>North city limit/midway between 63rd St. to 64th St.</td>
<td>Fairview Blvd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Brea Ave.</td>
<td>North city limit/midway between 63rd St. to 64th St.</td>
<td>104th St.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Brea Ave.</td>
<td>North city limit/midway between 63rd St. to 64th St.</td>
<td>Centinela Ave.</td>
<td>66</td>
<td>4</td>
<td>C</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Brea Ave.</td>
<td>Centinela Ave.</td>
<td>Plymouth St.</td>
<td>76</td>
<td>4</td>
<td>C/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Brea Ave.</td>
<td>Plymouth St.</td>
<td>Hilcrest</td>
<td>76</td>
<td>4</td>
<td>C</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIKE PATH</td>
<td>BIKE BOULEVARD</td>
<td>BIKE LANES</td>
<td>BIKE ROUTES W/ SHARROWS</td>
<td>COLORED BIKE LANES</td>
<td>BUFFERED BIKE LANES</td>
<td>DOUBLE BUFFERED BIKE LANES</td>
<td>DOUBLE BUFFERED COLORED BIKE LANES</td>
<td>BIKE ROUTE W/ GREENBACK SHARROWS</td>
<td>ONE-WAY PROTECTED BIKE LANES</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------</td>
<td>------------</td>
<td>--------------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>--------------------------</td>
<td>-------------------------------------</td>
<td>----------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>4.5'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>east side</td>
<td>west side</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>east side</td>
<td>west side</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5'</td>
<td>south side</td>
<td>north side</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>north side</td>
<td>south side</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

continued
**EXISTING CONDITIONS**

<table>
<thead>
<tr>
<th>STREET</th>
<th>FROM</th>
<th>TO</th>
<th>WIDTH</th>
<th>TO MEDIAN</th>
<th># LANES</th>
<th>CENTER/TURN LANE/MEDIAN</th>
<th>PARKING</th>
<th>EXISTING BIKEWAYS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Brea Ave.</td>
<td>Hillcrest</td>
<td>Market St./ La Palma Dr.</td>
<td>26-37</td>
<td>x</td>
<td>2</td>
<td>M</td>
<td>north side only</td>
<td></td>
<td>26' EB no on-street parking</td>
</tr>
<tr>
<td>La Brea Ave.</td>
<td>La Palma Dr.</td>
<td>Arbor Vitae St.</td>
<td>39-40</td>
<td>x</td>
<td>3</td>
<td>M</td>
<td>x</td>
<td>Market St. turns into La Brea Ave. @ La Palma Dr.</td>
<td></td>
</tr>
<tr>
<td>La Brea Ave.</td>
<td>Arbor Vitae St.</td>
<td>Century Blvd.</td>
<td>45</td>
<td>x</td>
<td>3</td>
<td>M</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Brea Ave. (turns into Hawthorne)</td>
<td>Century Blvd.</td>
<td>104th St.</td>
<td>45</td>
<td>x</td>
<td>3</td>
<td>M</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market St.</td>
<td>Florence Ave.</td>
<td>La Palma Dr.</td>
<td>76</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>18' angled both sides</td>
<td></td>
</tr>
<tr>
<td>Market St.</td>
<td>Florence Ave.</td>
<td>Regent St.</td>
<td>23-24</td>
<td>x</td>
<td>1</td>
<td>M</td>
<td>angled parallel parking / parking</td>
<td>switches between east side and west side; consider reverse-in angled parking</td>
<td></td>
</tr>
<tr>
<td>Market St.</td>
<td>Regent St.</td>
<td>Hillcrest St.</td>
<td>40</td>
<td>x</td>
<td>2</td>
<td>M</td>
<td>long curb and median</td>
<td>parallel parking along curb and median (4 lanes of parking total)</td>
<td></td>
</tr>
<tr>
<td>La Palma Dr.</td>
<td>Spruce Ave.</td>
<td>Prairie Ave.</td>
<td>48</td>
<td>2</td>
<td></td>
<td>x</td>
<td></td>
<td>island blocking westbound traffic @ Spruce Ave. &amp; Market St.</td>
<td></td>
</tr>
<tr>
<td>La Palma Dr.</td>
<td>Larch St.</td>
<td>Prairie Ave.</td>
<td>42</td>
<td>2</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prairie Ave.</td>
<td>Florence Ave.</td>
<td>Imperial Hwy.</td>
<td>64</td>
<td>4</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prairie Ave.</td>
<td>Howland Dr.</td>
<td>Regent St.</td>
<td>64</td>
<td>4</td>
<td>C</td>
<td>west side only</td>
<td></td>
<td>reversible lane system signal</td>
<td></td>
</tr>
<tr>
<td>Prairie Ave.</td>
<td>Regent St.</td>
<td>North of Manchester Dr.</td>
<td>57</td>
<td>4</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prairie Ave.</td>
<td>North of Manchester Dr.</td>
<td>Manchester Blvd.</td>
<td>62</td>
<td>5</td>
<td>C</td>
<td></td>
<td></td>
<td>3 lanes SB, 2 lanes NB</td>
<td></td>
</tr>
<tr>
<td>Prairie Ave.</td>
<td>Manchester Blvd.</td>
<td>Buckthorn St.</td>
<td>78</td>
<td>6</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prairie Ave.</td>
<td>Buckthorn Ave.</td>
<td>Arbor Vitae St.</td>
<td>76</td>
<td>6</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prairie Ave.</td>
<td>Arbor Vitae St.</td>
<td>Hardy St.</td>
<td>33</td>
<td>x</td>
<td>3</td>
<td>M</td>
<td></td>
<td>short median islands; proposed street section under Hollywood Specific Plan</td>
<td></td>
</tr>
</tbody>
</table>
## PROPOSED BIKEWAYS

<table>
<thead>
<tr>
<th>BIKE PATH</th>
<th>BIKE BOULEVARD</th>
<th>BIKE LAKES</th>
<th>BIKE ROUTES W/ SHARROWS</th>
<th>COLORED BIKE LANES</th>
<th>BUFFERED BIKE LANES</th>
<th>DOUBLE BUFFERED BIKE LANES</th>
<th>BIKE W/ GREENBACK SHARROWS</th>
<th>ONE-WAY PROTECTED BIKE LANES</th>
<th>TWO-WAY PROTECTED BIKE LANES</th>
<th>LENGTH OF PROPOSED BIKEWAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>south side</td>
<td>north side</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Brea Ave. Hillcrest Market St./ La Palma Dr. 26-37 x 2 M north side only 26' EB no on-street parking south side 0.1</td>
<td>Option 2</td>
<td>Option 1* reduce to 2 lanes each direction</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Brea Ave. La Palma Dr. Arbor Vitae St. 39-40 x 3 M x Market St. turns into La Brea Ave. @ La Palma Dr. Option 2 Option 1* reduce to 2 lanes each direction 0.5</td>
<td>Option 2</td>
<td>Option 1* reduce to 2 lanes each direction</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Brea Ave. Arbor Vitae St. Century Blvd. 45 x 3 M x</td>
<td>Option 2</td>
<td>Option 1* reduce to 2 lanes each direction</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Brea Ave. (turns into Hawthorne) Century Blvd. 104th St. 45 x 3 M x</td>
<td></td>
</tr>
<tr>
<td>Market St. Florence Ave. La Palma Dr. 0.6</td>
<td></td>
</tr>
<tr>
<td>Market St. Florence Ave. Regent St. 76 2 18' angled both sides</td>
<td>Option 1 5'</td>
<td>Option 2</td>
<td>0.1</td>
<td>6' where parallel parking exists where angled parking existings 0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market St. Regent St. Hillcrest St. 23-24 with parallel parking, 33-34 with angled parking switches between east side and west side; consider reverse-in angled parking 6' where parallel parking exists</td>
<td></td>
</tr>
<tr>
<td>Market St. Hillcrest St. La Palma Dr. 40 x 2 M along curb and median parallel parking along curb and median (4 lanes of parking total) 0.1</td>
<td>Option 2</td>
<td>Option 1* reduce to 2 lanes each direction</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Palma Dr. Spruce Ave. Prairie Ave. 0.5</td>
<td></td>
</tr>
<tr>
<td>La Palma Dr. Spruce Ave. Larch St. 48 2 x island blocking westbound traffic @ Spruce Ave. &amp; Market St. x 0.2</td>
<td></td>
</tr>
<tr>
<td>La Palma Dr. Larch St. Prairie Ave. 42 2 x</td>
<td></td>
</tr>
<tr>
<td>Prairie Ave. Florence Ave. Imperial Hwy. 2.9</td>
<td></td>
</tr>
<tr>
<td>Prairie Ave. Florence Ave. Howland Dr. 64 4 C</td>
<td></td>
</tr>
<tr>
<td>Prairie Ave. Howland Dr. Regent St. 64 4 C west side only west side east side 0.1</td>
<td></td>
</tr>
<tr>
<td>Prairie Ave. Regent St. North of Manchester Dr. 57 4 C reversible lane system signal</td>
<td>Option 2</td>
<td>Option 1* reduce to 4 lanes</td>
<td>0.1</td>
<td>7' west side Option 1* west side east side 0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prairie Ave. Manchester Blvd. Buckthorn St. 78 6 C &quot;potential to add bike path on Forum/ Stadium Side&quot;</td>
<td>Option 2</td>
<td>Option 1* reduce to 5 lanes &amp; CTL</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prairie Ave. Buckthorn Ave. Arbor Vitae St. 76 6 C potential to add bike path on Stadium Side</td>
<td>Option 2</td>
<td>Option 1* reduce to 4 lanes &amp; CTL</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prairie Ave. Arbor Vitae St. Hardy St. 33 x 3 M short median islands; proposed street section under Hollywood Specific Plan &quot;potential to add bike path on Stadium Side&quot;</td>
<td></td>
</tr>
</tbody>
</table>

*continued*

*This bike infrastructure requires additional traffic analysis and/or parking analysis to proceed because it proposes a road diet and/or elimination of parking. Traffic or parking analysis to be conducted after the NFL stadium and NBA arena are both in operation.*
### EXISTING CONDITIONS

<table>
<thead>
<tr>
<th>STREET</th>
<th>FROM</th>
<th>TO</th>
<th>WIDTH</th>
<th>TO MEDIAN</th>
<th># LANES</th>
<th>CENTER/TURN LANE/MEDIAN</th>
<th>PARKING</th>
<th>EXISTING BIKEWAYS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prairie Ave.</td>
<td>Hardy St.</td>
<td>97th St.</td>
<td>76-88</td>
<td>6</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>proposed street section under Hollywood Specific Plan (88’ includes right-turn pocket)</td>
</tr>
<tr>
<td>Prairie Ave.</td>
<td>97th St.</td>
<td>Century Blvd.</td>
<td>33-34</td>
<td>x</td>
<td>3</td>
<td>M</td>
<td></td>
<td></td>
<td>short median islands; proposed street section under Hollywood Specific Plan</td>
</tr>
<tr>
<td>Prairie Ave.</td>
<td>Century Blvd.</td>
<td>Imperial Hwy.</td>
<td>76</td>
<td>6</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>peak hour parking restriction (allowed at other times)</td>
</tr>
<tr>
<td>8th Ave.</td>
<td>North City Limit/79th St.</td>
<td>Crenshaw Blvd.</td>
<td>40</td>
<td>2</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crenshaw Blvd.</td>
<td>79th St.</td>
<td>119th St.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crenshaw Blvd.</td>
<td>North City Limit/79th St.</td>
<td>8th Ave.</td>
<td>30</td>
<td>x</td>
<td>2</td>
<td>M</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crenshaw Blvd.</td>
<td>8th Ave.</td>
<td>85th St.</td>
<td>varies</td>
<td>5</td>
<td>C/M</td>
<td>varies</td>
<td></td>
<td>3 lanes NB, 2 lanes SB; cross section varies</td>
<td></td>
</tr>
<tr>
<td>Crenshaw Blvd.</td>
<td>85th St.</td>
<td>Manchester Blvd.</td>
<td>76</td>
<td>5</td>
<td>C</td>
<td>west side only</td>
<td></td>
<td>3 lanes NB, 2 lanes SB</td>
<td></td>
</tr>
<tr>
<td>Crenshaw Blvd.</td>
<td>Manchester Blvd.</td>
<td>88th St.</td>
<td>76</td>
<td>4</td>
<td>C</td>
<td>x</td>
<td></td>
<td>short median islands; peak hour parking restriction</td>
<td></td>
</tr>
<tr>
<td>Crenshaw Blvd.</td>
<td>88th St.</td>
<td>Century Blvd.</td>
<td>76</td>
<td>5</td>
<td>C</td>
<td>east side only</td>
<td></td>
<td>10-10-12 lanes; consider bus-bike lane in #3 lane</td>
<td></td>
</tr>
<tr>
<td>Crenshaw Blvd.</td>
<td>Century Blvd.</td>
<td>Imperial Hwy.</td>
<td>32</td>
<td>x</td>
<td>3</td>
<td>M</td>
<td></td>
<td>10-10-12 lanes; consider bus-bike lane in #3 lane</td>
<td></td>
</tr>
<tr>
<td>Crenshaw Blvd.</td>
<td>Imperial Hwy.</td>
<td>119th St.</td>
<td>32</td>
<td>x</td>
<td>3</td>
<td>M</td>
<td></td>
<td>10-10-12 lanes; consider bus-bike lane in #3 lane</td>
<td></td>
</tr>
<tr>
<td>5th Ave.</td>
<td>76th St.</td>
<td>101st St.</td>
<td>40</td>
<td>2</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th Ave.</td>
<td>76th St.</td>
<td>82nd St./Park Circle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th Ave.</td>
<td>Park Circle</td>
<td>83rd St.</td>
<td>70</td>
<td>1</td>
<td></td>
<td>Outside of Park Circle</td>
<td>Traffic Circle measures 70’ all around; consider widening Park Circle to narrow down the street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th Ave.</td>
<td>83rd St./Park Circle</td>
<td>101st St.</td>
<td>36</td>
<td>2</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van Ness Ave.</td>
<td>76th St.</td>
<td>Imperial Hwy.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van Ness Ave.</td>
<td>76th St.</td>
<td>79th St.</td>
<td>36</td>
<td>2</td>
<td></td>
<td></td>
<td>east side only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van Ness Ave.</td>
<td>79th St.</td>
<td>81st St.</td>
<td>62</td>
<td>2</td>
<td>C</td>
<td></td>
<td></td>
<td>parallel parking east side; angled parking west side</td>
<td></td>
</tr>
<tr>
<td>Van Ness Ave.</td>
<td>81st St.</td>
<td>Manchester Blvd.</td>
<td>62</td>
<td>2</td>
<td>C</td>
<td>x</td>
<td>6’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van Ness Ave.</td>
<td>Manchester Blvd.</td>
<td>88th St.</td>
<td>48</td>
<td>2</td>
<td>C</td>
<td>west side only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van Ness Ave.</td>
<td>88th St.</td>
<td>89th St.</td>
<td>56</td>
<td>2</td>
<td>C</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**PROPOSED BIKEWAYS**

<table>
<thead>
<tr>
<th>BIKE PATH</th>
<th>BIKE BOULEVARD</th>
<th>BIKE LANES</th>
<th>BIKE ROUTES W/ SHARROWS</th>
<th>COLORED BIKE LANES</th>
<th>BUFFERED BIKE LANES</th>
<th>DOUBLE BUFFERED BIKE LANES</th>
<th>BIKE W/ GREENBACK SHARROWS</th>
<th>ONE-WAY PROTECTED BIKE LANES</th>
<th>TWO-WAY PROTECTED BIKE LANES</th>
<th>LENGTH OF PROPOSED BIKEWAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Option 2</td>
<td>Option 1*</td>
<td>reduce to 5 lanes &amp; CTL</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Option 2</td>
<td>Option 1*</td>
<td>reduce to 2 lanes each</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Option 2</td>
<td>Option 2</td>
<td>Option 3</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Option 2</td>
<td>Option 3</td>
<td>Option 1*</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Option 2</td>
<td>Option 3</td>
<td>Option 1*</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Option 2</td>
<td>Option 3</td>
<td>Option 1*</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Option 2</td>
<td>Option 3</td>
<td>Option 1*</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*This bike infrastructure requires additional traffic analysis and/or parking analysis to proceed because it proposes a road diet and/or elimination of parking. Traffic or parking analysis to be conducted after the NFL stadium and NBA arena are both in operation.*
## EXISTING CONDITIONS

<table>
<thead>
<tr>
<th>STREET</th>
<th>FROM</th>
<th>TO</th>
<th>WIDTH</th>
<th>TO MEDIAN</th>
<th># LANES</th>
<th>CENTER TURN LANE/ MEDIAN</th>
<th>PARKING</th>
<th>EXISTING BIKEWAYS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van Ness Ave.</td>
<td>89th St.</td>
<td>Century Blvd.</td>
<td>46</td>
<td>2</td>
<td>C</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van Ness Ave.</td>
<td>Century Blvd.</td>
<td>109th St.</td>
<td>56</td>
<td>2</td>
<td>C</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van Ness Ave.</td>
<td>108th St.</td>
<td>Imperial Hwy.</td>
<td>56</td>
<td>2</td>
<td>C</td>
<td>x</td>
<td></td>
<td></td>
<td>bike route w/ sharrows east side only</td>
</tr>
<tr>
<td>Yukon Ave.</td>
<td>Century Blvd.</td>
<td>119th Ct.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yukon Ave.</td>
<td>Century Blvd.</td>
<td>104th St.</td>
<td>57</td>
<td>3</td>
<td>C</td>
<td>west side only</td>
<td></td>
<td></td>
<td>2 lanes NB, 1 lane SB</td>
</tr>
<tr>
<td>Yukon Ave.</td>
<td>104th St.</td>
<td>107th St.</td>
<td>34</td>
<td>2</td>
<td></td>
<td>west side only</td>
<td></td>
<td></td>
<td>no parking school side</td>
</tr>
<tr>
<td>Yukon Ave.</td>
<td>107th St.</td>
<td>113th St.</td>
<td>40</td>
<td>2</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yukon Ave.</td>
<td>113th St.</td>
<td>Imperial Hwy.</td>
<td>40</td>
<td>2</td>
<td></td>
<td>east side only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yukon Ave.</td>
<td>Imperial Hwy.</td>
<td>119th Ct.</td>
<td>40</td>
<td>2</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Proposed Bikeways

<table>
<thead>
<tr>
<th>BIKE PATH</th>
<th>BIKE BOULEVARD</th>
<th>BIKE LANES</th>
<th>BIKE ROUTES W/ SHARROWS</th>
<th>COLORED BIKE LANES</th>
<th>BUFFERED BIKE Lanes</th>
<th>DOUBLE BUFFERED BIKE Lanes</th>
<th>BIKE ROUTE W/ GREENBACK SHARROWS</th>
<th>ONE WAY PROTECTED BIKE LANES</th>
<th>TWO WAY PROTECTED BIKE LANES</th>
<th>LENGTH OF PROPOSED BIKEWAYS (MI.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van Ness Ave. 89th St. Century Blvd. 46</td>
<td>2</td>
<td>x</td>
<td>6'</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van Ness Ave. Century Blvd. 108th St. 56</td>
<td>2</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van Ness Ave. 108th St. Imperial Hwy. 56</td>
<td>2</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yukon Ave. Century Blvd. 119th Ct.</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yukon Ave. Century Blvd. 104th St. 57</td>
<td>3</td>
<td>west side only</td>
<td>2 lanes NB, 1 lane SB</td>
<td>5'</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yukon Ave. 104th St. 107th St. 34</td>
<td>2</td>
<td>west side only</td>
<td>east side</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yukon Ave. 107th St. 113th St. 40</td>
<td>2</td>
<td>east side only</td>
<td>west side</td>
<td>6.5'</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yukon Ave. Imperial Hwy. 119th Ct. 40</td>
<td>2</td>
<td>east side only</td>
<td>west side</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*continued*
PROPOSED BICYCLE PARKING

Presently Inglewood has no public bicycle parking. It will be important for the City to add bicycle parking for people to be able to have a secure and convenient place to lock their bicycles. The following tables identify the recommended locations and numbers. Over time if demand increases, the City should add bicycle parking to meet the demand. Bicycle parking is recommended at schools, parks, at civic buildings, along commercial "main streets," and other notable locations. Map 6.2 displays these parking locations.

### TABLE. 6.2 BICYCLE PARKING AT SCHOOLS

<table>
<thead>
<tr>
<th>SCHOOL</th>
<th>ADDRESS</th>
<th># BICYCLES SERVED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albert F. Monroe Magnet Middle School</td>
<td>10711 S. 10th Ave.</td>
<td>20</td>
</tr>
<tr>
<td>Clyde Woodworth Elementary School</td>
<td>10711 S. 10th Ave.</td>
<td>10</td>
</tr>
<tr>
<td>Bennett-Kew Elementary School</td>
<td>11710 S. Cherry Ave.</td>
<td>10</td>
</tr>
<tr>
<td>Beulah Payne Elementary School</td>
<td>215 W. 94th St.</td>
<td>10</td>
</tr>
<tr>
<td>Centinela Elementary School</td>
<td>1123 Marlborough Ave.</td>
<td>10</td>
</tr>
<tr>
<td>City Honors College Preparatory Academy</td>
<td>120 W. Regent St.</td>
<td>10</td>
</tr>
<tr>
<td>Crozier Middle School</td>
<td>120 W. Regent St.</td>
<td>20</td>
</tr>
<tr>
<td>Claude Hudnall Elementary School</td>
<td>331 W. Olive St.</td>
<td>10</td>
</tr>
<tr>
<td>Frank D. Parent K-8 School</td>
<td>5354 W. 64th St.</td>
<td>20</td>
</tr>
<tr>
<td>Highland Elementary School</td>
<td>430 Venice Way</td>
<td>10</td>
</tr>
<tr>
<td>Inglewood High School</td>
<td>231 S. Grevillea Ave.</td>
<td>30</td>
</tr>
<tr>
<td>La Tijera K-8 Academy of Excellence Charter School</td>
<td>1415 N. La Tijera Blvd.</td>
<td>20</td>
</tr>
<tr>
<td>Morningside High School</td>
<td>10500 S. Yukon Ave.</td>
<td>30</td>
</tr>
<tr>
<td>Oak Street Elementary School</td>
<td>633 S. Oak St.</td>
<td>10</td>
</tr>
<tr>
<td>Warren Lane Elementary School</td>
<td>2602 W. 79th St.</td>
<td>10</td>
</tr>
<tr>
<td>William H. Kelso Elementary School</td>
<td>809 E. Kelso St.</td>
<td>10</td>
</tr>
<tr>
<td>Worthington Elementary School</td>
<td>11101 S. Yukon Ave.</td>
<td>10</td>
</tr>
<tr>
<td>Inglewood Continuation High School</td>
<td>441 W. Hillcrest Blvd.</td>
<td>10</td>
</tr>
<tr>
<td>Inglewood Adult School</td>
<td>106 E. Manchester Blvd.</td>
<td>10</td>
</tr>
</tbody>
</table>

### TABLE. 6.3 BICYCLE PARKING AT PARKS

<table>
<thead>
<tr>
<th>PARK</th>
<th>ADDRESS</th>
<th># BICYCLES SERVED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ashwood Park</td>
<td>201 S. Ash Ave.</td>
<td>10</td>
</tr>
<tr>
<td>Center Park</td>
<td>3660 W. 111th St.</td>
<td>10</td>
</tr>
<tr>
<td>Centinela Adobe Park</td>
<td>7634 Midfield Ave.</td>
<td>6</td>
</tr>
<tr>
<td>Circle Park</td>
<td>8300 5th Ave.</td>
<td>4</td>
</tr>
<tr>
<td>Darby Park</td>
<td>3400 W. Arbor Vitae St.</td>
<td>20 (dispersed)</td>
</tr>
<tr>
<td>Edward Vincent Park</td>
<td>700 Warren Ln.</td>
<td>30 (dispersed)</td>
</tr>
<tr>
<td>Grevillea Park</td>
<td>231 S. Grevillea Ave.</td>
<td>10</td>
</tr>
<tr>
<td>North Park</td>
<td>625 E. Hargrave St.</td>
<td>10</td>
</tr>
<tr>
<td>Queen Park</td>
<td>652 E. Queen St.</td>
<td>10</td>
</tr>
<tr>
<td>Rogers Park</td>
<td>400 W. Beach Ave.</td>
<td>20 (dispersed)</td>
</tr>
<tr>
<td>Siminski Park</td>
<td>9717 Inglewood Ave.</td>
<td>10</td>
</tr>
</tbody>
</table>
## TABLE 6.4 BICYCLE PARKING AT LOS ANGELES STADIUM AT HOLLYWOOD PARK

<table>
<thead>
<tr>
<th>PARK</th>
<th># BICYCLES SERVED BY RACKS, LOCKERS, OR ATTENDANTS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stadium</td>
<td>60 (dispersed)</td>
<td>Attendant parking would best serve this</td>
</tr>
<tr>
<td>Performance Art Venue</td>
<td>20 (dispersed)</td>
<td>Attendant parking would best serve this</td>
</tr>
<tr>
<td>Office space</td>
<td>150</td>
<td>The majority of these should be with secure bicycle lockers</td>
</tr>
<tr>
<td>Retail, restaurant and hotel</td>
<td>50</td>
<td>Dispersed near doorways</td>
</tr>
<tr>
<td>Parks</td>
<td>20</td>
<td>Dispersed</td>
</tr>
</tbody>
</table>

## TABLE 6.5 BICYCLE PARKING AT OTHER LOCATIONS

<table>
<thead>
<tr>
<th>PARK</th>
<th>ADDRESS</th>
<th># BICYCLES SERVED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lockhaven Center</td>
<td>11125 Doty Ave.</td>
<td>8</td>
</tr>
<tr>
<td>Senior Citizens’ Center</td>
<td>111 N. Locust St.</td>
<td>8</td>
</tr>
<tr>
<td>The Forum</td>
<td>3900 Manchester Ave.</td>
<td>30 (attendant parking would best serve this)</td>
</tr>
<tr>
<td>Market Street</td>
<td>Dispersed between Florence Ave. and Hillcrest Blvd.</td>
<td>60 (6 per block on each side)</td>
</tr>
<tr>
<td>La Brea Avenue</td>
<td>Dispersed between Florence Ave. and Nutwood St.</td>
<td>32 (4 per block on each side)</td>
</tr>
</tbody>
</table>
PROPOSED PARKING REQUIREMENTS

When new development occurs, new buildings should have bicycle parking. This should be required just as auto parking is required. The City may choose to adopt its own ordinance, or it may adopt standards required by California Green Building Code 5.106.4.1. This code requires the following of non-residential buildings:

- Short-term bicycle parking must be provided in a new building or addition/alteration shall have permanently anchored bicycle racks at a rate of 5% of new visitor motor vehicle parking, with a minimum of one two-bike capacity rack. These racks must be within 200 feet of the visitors’ entrance.
- Long-term bicycle parking in buildings that have 10 or more tenant occupants must be provided at a rate of 5% of the tenant motor vehicle parking, with a minimum of one bicycle parking facility. Additions or alterations must follow the same requirement.
- Long-term bicycle parking must be convenient to the street and meet one of the following:
  - Covered, lockable enclosures with permanently anchored racks,
  - Lockable bicycle room with permanently anchored racks,
  - Lockable, permanently anchored bicycle lockers.

Public schools must provide:

- A minimum of four two-bike capacity racks per building for students
- Long-term bicycle parking for staff that is convenient to the street that include a minimum or two bicycle parking spaces for each new building. It must meet one of the following:
  - Covered, lockable enclosures with permanently anchored racks,
  - Lockable bicycle room with permanently anchored racks,
  - Lockable, permanently anchored bicycle lockers.
PROPOSED LINKS TO PUBLIC TRANSIT AND OTHER TRANSPORTATION MODES

Bicycling can be an important means to solve the “first-and-last-mile” problem. Where people can bicycle to a secure parking area they can connect to a ride on public transit or meet someone for a carpool or vanpool. Since bicycles are parked all day long, users need secure parking so they can be confident that their bicycles will be there when they return. Secure bicycle parking can be in the form of lockers, attendant parking or automated parking. Since secure parking usually requires up-front, long-term planning such as reserving a locker, it will also be important to provide a small number of bicycle racks for the occasional user or for someone just starting out with their new commute habits. The following tables show recommended bicycle parking. Map 6.2 displays these links.

TABLE 6.6 BICYCLE PARKING AT TRANSIT STATIONS

<table>
<thead>
<tr>
<th>STATION</th>
<th># BICYCLES SERVED BY SECURE PARKING</th>
<th># BICYCLES SERVED BY RACKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fairview Heights</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>Downtown</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>Inglewood Transit Center</td>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>
PROPOSED END-OF-TRIP AMENITIES

Currently Inglewood has not end-of-trip amenities such as showers and clothing lockers that enable bicycle commuters to shower and change clothes after riding in. They should be provided at the new Downtown Inglewood Crenshaw/LAX Line Station so that people can commute to them from residences in Inglewood, or to work sites in Inglewood. It is recommended that the City open a Bike Station with at least 6 shower facilities, along with at least 40 lockable clothing lockers. This is shown on Map 6.2.

The City should also consider end-of-trip amenity requirements in new non-residential buildings. It may adopt its own ordinance or refer to the California Green Building Code. The California Green Building Code (A5.106.4.3) requires that new non-residential buildings provide showers and changing facilities to accommodate bicycle commuters. Specifically, the Code requires that buildings with over 10 tenant occupants provide changing/shower facilities or make arrangements with nearby changing/shower facilities.
MAP 6.2 PROPOSED BICYCLE PARKING, LINKS TO TRANSIT AND OTHER TRANSPORTATION MODES, AND END OF TRIP AMENITIES
WAYFINDING SIGNAGE

Refer to Appendix A, Design Toolbox for design guidance on wayfinding signage for bicycle facilities.
This page intentionally left blank
PROPOSED PEDESTRIAN FACILITIES PLAN

Based on existing conditions, data collection and participation from the community, the Pedestrian Facilities Plan proposes to create a safe, convenient and attractive pedestrian network. This Plan prepares recommendations for the top 27 locations as identified by at the Community Walk Audit Workshop, by the Technical Advisory Committee (TAC) and by City staff. The TAC and City staff used collision maps to help determine where these are. These locations have been prepared in addition to improvements in Chapter 9: Safe Routes to School Plan.
A walk audit is an important tool for analyzing Inglewood’s streets on a block by block basis. It helps participants and City staff understand the characteristics of a place, evaluate how the built environment and the street function with one another, and provide a means to partner with diverse stakeholders to implement a shared vision.

A Downtown Walk Audit Workshop was held on Saturday, May 7, 2016. A range of participants attended, including residents, business owners, community representatives, and city staff. The workshop began with a brief presentation on the importance of creating a walkable community, precedent photos of pedestrian-friendly streets and not-so-friendly streets, and recommendations on improving walkability and personal safety around Inglewood. A guided walk audit was conducted following the presentation. The walking route for this audit is shown in Map 7.1. Participants assessed the quality of their walking experience by looking around and evaluating places along the route while discussing site-specific observations, potential opportunities, and strategic steps to improve the overall walking experience.

The walk audit achieved a series of quantifiable indicators of how the street encourages or discourages pedestrian uses, the viability of commercial streets, and its impact on the surrounding neighborhood.
MAP 7.2 DOWNTOWN WALK AUDIT STAKEHOLDER WORKSHOP MAP COMMENTS

**LEGEND**
- widened sidewalks
- accessibility improvements
- streetscape improvements
- directional signage/kiosks
- intersection improvement
- bike lane improvements
- business improvement district
- community gateway
- bike share/station kiosk

**ACCESSIBILITY IMPROVEMENTS**
- Improve pedestrian access from Downtown Inglewood to the Metro La Brea/Florence station site

**STREETSCAPE ENHANCEMENTS**
- Extend streetscape enhancements and street furniture north of Regent Street up to the Metro La Brea/Florence station site

**BUSINESS/FACADE IMPROVEMENT DISTRICT**
- Concentrate on revitalization efforts to address the number of vacant storefronts and historic buildings along Market Street
PEDESTRIAN TOOLKIT PRIORITIES

Stakeholders that attended the downtown Walk Audit workshop identified opportunities for a variety of priorities to enhance the pedestrian environment. These included opportunities for:

- Visible Crosswalks
- Special Sidewalk Paving
- Automatic Pedestrian Signals
- Bike Lanes
- Wayfinding/Destination Signs
- Street Furniture
- Native Landscaping + Street Trees
- Placemaking + Community Identity
- Directory Kiosks
- Native Landscaping + Street Trees
- An Entertainment Business District
- Metro Transit Bike Station and Service Center near Downtown

LOCATION-SPECIFIC PRIORITIES

Map 7.2 summarizes the comments collected from the stakeholder workshop maps. Stakeholders also collectively presented on a number of recommendations for Downtown Inglewood as part of the workshop. These comments were recorded and listed below:

- Extend landscaping and streetscape enhancements along Market St. north to Florence Ave.
- Add directory kiosks and signage along Manchester Blvd., Market St., and Florence Ave.
- Bring back the Historic Trolley along Market St. with stops from the Metro La Brea/Florence station to the Forum
- Implement trolley or transit connector connecting Florence Ave., Market St., La Brea Ave., Manchester Blvd., and Fir Ave.
- Improve pedestrian connection between the Inglewood Courthouse and Market St.
- Add more bus lines along La Brea Ave.
- Install a bike/car station at Inglewood Courthouse
- Widen sidewalks along Florence Ave.
- Create a sign ordinance with incentives for businesses
- Implement traffic calming measures at Centinela Ave. and Florence Ave.
- Improve access to the northern region from the Metro La Brea/Florence station
- Increase safety for bicyclists on Florence Ave.
- Establish parking districts around Downtown Inglewood
- Build an above-grade pedestrian bridge over Florence Ave. from the Metro La Brea/Florence station
- Improve the safety and security in the Locust St./Manchester Blvd. parking structure
PLACEMAKING OPPORTUNITIES

Building upon the unique historic, cultural and institutional character of Inglewood creates opportunities for promoting vibrant commercial corridors, leveraging economic activity, and creating a sense of identity and place. Stakeholders provided the following suggestions to create more attractive and walkable streets in the City:

- Incorporate historic photos of Market St along the street
- Integrate the history of Inglewood as a former agricultural town into a bedroom community
- Build upon the “City of Champions” image and the upcoming Los Angeles Ram’s Stadium
- Involve local artists in the placemaking process
- Include history plaques at places of historic interest (i.e. along Market St)
- Incorporate the image of Inglewood as the “City of Neighborhoods” create murals on blank walls (i.e. Metro station overpass along Florence Ave)

Top photo: “Los Angeles Transit Lines (ex-Los Angeles Railway) southbound 5 Line car no. 1265 waits for pedestrians next to the Fox Theater on Market Street in Inglewood in this image captured May 7, 1955.” Source: Pacific Electric
PROPOSED PEDESTRIAN IMPROVEMENTS

Based on existing conditions data and community feedback, the following pedestrian improvements are proposed to create a complete, safe, and attractive pedestrian network in Inglewood.

COMMUNITY PRIORITIES

The planned list of physical improvements for pedestrian accessibility were identified at the first Community Workshop and by the Technical Advisory Committee (TAC). A total of 27 locations have been selected in addition to those prepared in the SRTS Plan in Chapter 9: Safe Routes to School Plan. The selection criteria and priorities for these 27 locations included consideration of:

- Proximity to key destinations, including transit stops, parks, and downtown
- Connections to key destinations, such as schools, commercial centers, transit stations
- High crash locations
- High pedestrian count data
- Traffic safety and vehicular speeding concerns
- Existing roadway conditions such as traffic volumes, road widths, and number of lanes

Recommendations for the appropriate facilities for each location are described in further detail in Appendix A: Design Toolbox.

ENGINEERING RECOMMENDATIONS

The planned physical improvements are described in the following pages. Appendix A: Design Toolbox provides definitions and guidance on these improvements.

The improvements are shown in Map 7.3 on the next page with their corresponding numbers. This planned list of improvements gives the City projects that it can seek funds for. The City may want to change the list over time, as the list is conceptual.

The graphics provided for each of the intersection recommendations are conceptual and engineering will need to be conducted prior to construction.

TRAFFIC CALMING: Any recommended traffic calming will have to follow standard City policies and procedures. Speed humps, for example, require signatures of support from 2/3 of the affected residents.

BULB-OUTS/CURB EXTENSIONS/REDUCED CURB RETURNS: All recommended bulbs-outs, curb extensions and reduced curb returns require further study to ensure adequate turning radii for larger vehicles, such as buses, large trucks, and emergency vehicles. All bulb-outs, curb extensions, and reduced curb returns will include perpendicular curb ramps and truncated dome tactile devices for the sight-impaired. All new curb ramps are assumed to include the truncated domes with tactile devices. Locations of proposed bulb-outs and curb extensions will need to be assessed for any potential drainage issues.

PEDESTRIAN SIGNALS All signals with countdown ped heads will include accessible pedestrian signals (APS) for the sight-impaired.

All of the engineering recommendations are subject to modification based on further study, changing conditions, funding availability, and other factors. The City retains flexibility to construct modified improvements. The City may also implement improvements incrementally as funding and opportunities arise. All improvements are subject to the approval of the Public Works Department and other appropriate City departments.
MAP 7.3 PROPOSED PEDESTRIAN IMPROVEMENT LOCATIONS

PROPOSED PEDESTRIAN IMPROVEMENT LOCATIONS
27 CITYWIDE LOCATIONS

LEGEND

# Improvement Locations
PROPOSED PEDESTRIAN IMPROVEMENTS LOCATIONS

1 S. LA BREA AVE. & E. QUEEN ST.

EXISTING

- Transverse-line crosswalks on all legs
- Countdown signals on all legs
- Permissive left-turn phasing on all legs
- On-street parking permitted on the north leg (north of the intersection) and the north side of the east leg

PROPOSED

<table>
<thead>
<tr>
<th>IMPROVEMENT</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add advance stop lines to all legs (4)</td>
<td>$480</td>
</tr>
<tr>
<td>Reduce the curb return on the southwest and southeast corners (2)</td>
<td>$20,000</td>
</tr>
<tr>
<td>Add a curb extension to the north side of the east leg (1) and the east side of the north leg (1) (2 total)</td>
<td>$30,000</td>
</tr>
<tr>
<td>Add a bus bulb on the west side of the north leg (1)</td>
<td>$10,000</td>
</tr>
<tr>
<td>Add crossing islands to the green-painted medians on the north and south legs (4)</td>
<td>$15,000</td>
</tr>
</tbody>
</table>

TOTAL COST $75,480
## S. LA BREA AVE. & E. MANCHESTER BLVD.

### EXISTING
- 4-way signalized intersection
- Transverse-line crosswalks with decorative print on all legs
- Countdown signals on all legs
- Protected left-turn signal phasing to the east and west legs (NB/SB traffic)
- Protected-permissive left-turn signal phasing to the north and south legs (EB/WB)
- Median extends into crosswalk on the north leg
- On-street parking permitted on the west, south and east legs

### PROPOSED

<table>
<thead>
<tr>
<th>IMPROVEMENT</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add advance stop lines to all legs (4)</td>
<td>$1,320</td>
</tr>
<tr>
<td>Truncate the median on the north leg (1)</td>
<td>$500</td>
</tr>
<tr>
<td>Reduce the curb return on the northwest corner (1)</td>
<td></td>
</tr>
<tr>
<td>Add protected left-turn signal phasing to the north and south legs (EB/WB) (2)</td>
<td>$20,000</td>
</tr>
</tbody>
</table>

### ADA BARRIER REMOVAL
REFER CHAPTER 8, ADA TRANSITION FRAMEWORK PLAN, FOR MORE DETAILS
- The curb ramp on the northeast corner requires reconstruction to meet ADA Standards
  $3,500

**TOTAL COST** $25,320
S. GREVILLEA AVE. & E. ARBOR VITAE ST.

EXISTING

- 4-way signalized intersection
- Yellow transverse-line crosswalks on all legs
- Permissive left-turn signal phasing on all legs
- On-street parking permitted on the south, east, west, and east side of the north leg
- Restricted parking along Arbor Vitae St. (east and west legs) on Monday through Friday 3:30 am – 6 am.

PROPOSED

<table>
<thead>
<tr>
<th>IMPROVEMENT</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add yellow continental crosswalks to all legs (4)</td>
<td>$2,100</td>
</tr>
<tr>
<td>Add advance stop lines to all legs (4)</td>
<td>$960</td>
</tr>
<tr>
<td>Add curb extensions to both sides of the south leg (2) and west side of the north leg (1) (3 total)</td>
<td>$45,000</td>
</tr>
</tbody>
</table>

ADA BARRIER REMOVAL

REFER CHAPTER 8, ADA TRANSITION FRAMEWORK PLAN, FOR MORE DETAILS

- The curb ramp on the northbound crossing face of southeast corner requires reconstruction to meet ADA Standards

TOTAL COST $51,560
## W. CENTURY BLVD & 405 FREEWAY ON/OFF-RAMPS

**THIS IMPROVEMENT LOCATION WILL REQUIRE COOPERATION WITH CALTRANS**

### EXISTING
- Signalized 405 freeway off-ramp (eastbound on Century Blvd.)
- Transverse-line crosswalk on the south leg crossing the 405 Freeway on/off-ramps
- Accessible Pedestrian Signals and countdown signals on the east-most crossing of the south leg

### PROPOSED

<table>
<thead>
<tr>
<th>IMPROVEMENT</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add white continental crosswalks to the south leg (2 segments)</td>
<td>$750</td>
</tr>
<tr>
<td>Add an advance stop line to the 405 freeway off-ramp (1)</td>
<td>$240</td>
</tr>
<tr>
<td>Add Assembly W11-2 and W16-7p signs at the 405 freeway off-ramp (1 set)</td>
<td>$1,000</td>
</tr>
<tr>
<td>Reduce the curb return on the 405 freeway on-ramp (1)</td>
<td>$10,000</td>
</tr>
</tbody>
</table>

**TOTAL COST** **$11,950**

![Diagram of the proposed improvements with labels for each change, including W11-2 & W16-7 signs, continental crosswalk, reduced curb returns, and advance stop line.](image)
5 W. CENTURY BLVD. & S. INGLEWOOD AVE.

EXISTING
- 4-way signalized intersection
- Transverse-line crosswalks on all legs
- Automatic recall to pedestrian signals on the north and south legs
- Permissive left-turn signal phasing on all legs
- Missing curb ramp on the southwest corner
- On-street parking permitted on the north and south legs

PROPOSED

<table>
<thead>
<tr>
<th>IMPROVEMENT</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add white continental crosswalks to all legs (4)</td>
<td>$1,000</td>
</tr>
<tr>
<td>Add advance stop lines to all legs (4)</td>
<td>$1,440</td>
</tr>
</tbody>
</table>

TOTAL COST $4,440

### Before

![Before Image]
6 W. CENTURY BLVD. & S. FIR AVE./FIRMONA AVE.

EXISTING
- 4-way signalized intersection
- Transverse-line crosswalks on all legs
- Countdown signals on all legs
- Automatic recall to pedestrian signals on the north and south legs
- Permissive left-turn signal phasing on all legs
- On-street parking permitted on the north and south legs

PROPOSED

<table>
<thead>
<tr>
<th>IMPROVEMENT</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add white continental crosswalks to all legs (4)</td>
<td>$2,700</td>
</tr>
<tr>
<td>Add advance stop lines to all legs (4)</td>
<td>$1,200</td>
</tr>
</tbody>
</table>

ADA BARRIER REMOVAL

REFER CHAPTER 8, ADA TRANSITION FRAMEWORK PLAN, FOR MORE DETAILS
- The curb ramps on the southeast and southwest corners require reconstruction to meet ADA Standards

| TOTAL COST | $7,000 |

TOTAL COST $9,900
## W. CENTURY BLVD. & S. GREVILLEA AVE.

### EXISTING
- 4-way signalized intersection
- Transverse-line crosswalks on all legs
- Countdown signals on all legs
- Automatic recall to pedestrian signals on the north and south legs
- Permissive left-turn signal phasing on all legs
- Missing curb ramps on the south side of the west leg and north side of the east leg
- On-street parking permitted on the north leg and the west side of the south leg

### PROPOSED

<table>
<thead>
<tr>
<th>IMPROVEMENT</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add white continental crosswalks to all legs (4)</td>
<td>$2,700</td>
</tr>
<tr>
<td>Add advance stop lines to all legs (4)</td>
<td>$1,200</td>
</tr>
</tbody>
</table>

**ADA BARRIER REMOVAL**

Refer Chapter 8, ADA Transition Framework Plan, for more details
- The curb ramps on the southeast and southwest corners require reconstruction to meet ADA Standards
  - $7,000

**TOTAL COST**
- $9,900
## W. CENTURY BLVD. & S. LA BREA AVE./HAWTHORNE BLVD.

### EXISTING
- 4-way signalized intersection
- Transverse-line crosswalks on all legs
- Countdown signals on all legs
- Median extends into crosswalk on the south leg
- Protected left-turn signal phasing on all legs

### PROPOSED

<table>
<thead>
<tr>
<th>IMPROVEMENT</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add white continental crosswalks to all legs (4)</td>
<td>$4,200</td>
</tr>
<tr>
<td>Add advance stop lines to all legs (4)</td>
<td>$52,040</td>
</tr>
<tr>
<td>Truncate the median on the south leg (1)</td>
<td>$500</td>
</tr>
<tr>
<td>Add bus islands on the east side of the north leg (1) and the west side of the south leg (1) (2 total)</td>
<td>$12,800</td>
</tr>
<tr>
<td>Add protected islands with the bus islands on the east side of the north leg and the west side of the south leg (with City approval of buffered bike lanes (2)</td>
<td>$576</td>
</tr>
</tbody>
</table>

### ADA BARRIER REMOVAL

Refer Chapter 8, ADA Transition Framework Plan, for more details
- The curb ramps on all corners require reconstruction to meet ADA Standards

**TOTAL COST** $34,116
## W. CENTURY BLVD. & S. PRAIRIE AVE.

### EXISTING
- 4-way signalized intersection
- Transverse-line crosswalks on the south, east and west legs
- Continental crosswalk on the north leg
- Countdown signals on all legs
- Protected left-turn signal phasing on all legs

### PROPOSED

<table>
<thead>
<tr>
<th>IMPROVEMENT</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add white continental crosswalks to the south, east and west legs (3)</td>
<td>$3,150</td>
</tr>
<tr>
<td>Add advance stop lines to all legs (4)</td>
<td>$1,920</td>
</tr>
</tbody>
</table>

### ADA BARRIER REMOVAL

REFER CHAPTER 8, ADA TRANSITION FRAMEWORK PLAN, FOR MORE DETAILS

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>The curb ramps on all corners require reconstruction to meet ADA Standards</td>
<td>$14,000</td>
</tr>
</tbody>
</table>

**TOTAL COST** $19,070
10 W CENTURY BLVD. & CLUB DR.

EXISTING

• 4-way signalized intersection
• Transverse-line crosswalks on the east and west legs
• Red brick crosswalks on the north and south legs
• Countdown signals on all legs
• Automatic recall to pedestrian signals on all legs (may only be a condition during construction)
• North leg driveway entrance to shopping center is 33’ to the median (5’ median; 62’ curb-to-curb)

PROPOSED

<table>
<thead>
<tr>
<th>IMPROVEMENT</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add white continental crosswalks to all legs (4)</td>
<td>$3,900</td>
</tr>
<tr>
<td>Add advance stop lines to all legs (4)</td>
<td>$1,920</td>
</tr>
</tbody>
</table>

**ADA BARRIER REMOVAL**

Refer Chapter 8, ADA Transition Framework Plan, for more details

• The curb ramp on the northwest corner requires reconstruction to meet ADA Standards

<table>
<thead>
<tr>
<th>TOTAL COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3,500</td>
</tr>
</tbody>
</table>

**TOTAL COST**

<table>
<thead>
<tr>
<th>TOTAL COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>$9,320</td>
</tr>
</tbody>
</table>
W. CENTURY BLVD. & VILLAGE DR./S. 11TH AVE.

EXISTING
- 4-way signalized intersection
- Transverse-line crosswalks on all legs
- Countdown signals on all legs
- Permissive left-turn signal phasing to the east and west legs (NB/SB)
- Protective left-turn signal phasing to the north and south legs (EB/WB)
- South leg driveway entrance to shopping center is 58’ curb-to-curb
- Unaligned curb ramps on the northwest and northeast corners

PROPOSED

<table>
<thead>
<tr>
<th>IMPROVEMENT</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add white continental crosswalks to all legs (4)</td>
<td>$3,150</td>
</tr>
<tr>
<td>Add advance stop lines to all legs (4)</td>
<td>$1,440</td>
</tr>
<tr>
<td>Reduce the curb return on the southwest and southeast corners (2)</td>
<td>$20,000</td>
</tr>
<tr>
<td>Realign the curb ramps on the northwest and northeast corners (2)</td>
<td>$7,000</td>
</tr>
</tbody>
</table>

TOTAL COST $31,950
W. CENTURY BLVD. & S. CRENSHAW BLVD.

**EXISTING**
- 4-way signalized intersection
- Transverse-line crosswalks on all legs
- Countdown signals on all legs
- Protected left-turn signal phasing on all legs
- Unaligned curb ramp on the southwest corner

**PROPOSED**

<table>
<thead>
<tr>
<th>IMPROVEMENT</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add white continental crosswalks to all legs (4)</td>
<td>$4,050</td>
</tr>
<tr>
<td>Add advance stop lines to all legs (4)</td>
<td>$1,920</td>
</tr>
<tr>
<td>Add a curb ramp on the southwest corner (1)</td>
<td>$3,500</td>
</tr>
</tbody>
</table>

**ADA BARRIER REMOVAL**
- The curb ramps on the northwest, southeast and southwest corners require reconstruction to meet ADA Standards

TOTAL COST $19,970
## W CRENSHAW BLVD. & W. ARBOR VITAE ST. (SOUTH)

### EXISTING
- Signalized T-intersection
- Transverse-line crosswalks on the north, west and south legs
  - Crossing on the north leg next to fire gate does not extend into the main intersection
- One-way stop on the south leg (Frontage Road)
- Countdown signals on the north, west and south legs
- Automatic recall to pedestrian signals on the west leg
- Permissive left-turn signal phasing to the north and east legs (EB/NB)
- On-street parking permitted on the west leg and the east side of the south leg (frontage road)

### PROPOSED

<table>
<thead>
<tr>
<th>IMPROVEMENT</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add white continental crosswalks to the west and south legs (2)</td>
<td>$1,350</td>
</tr>
<tr>
<td>Add advance stop lines to the west and south legs (2)</td>
<td>$600</td>
</tr>
<tr>
<td>Add curb extensions to both sides of the west leg (2)</td>
<td>$30,000</td>
</tr>
<tr>
<td>Extend the median on the south leg to align with the curb extension on the south side of the east leg (1)</td>
<td>$960</td>
</tr>
<tr>
<td>Add a R-10-6 sign (&quot;Stop Here on Red&quot;) to the west leg (1)</td>
<td>$500</td>
</tr>
</tbody>
</table>

### ADA BARRIER REMOVAL
Refer Chapter 8, ADA Transition Framework Plan, for more details
- The curb ramps on the northwest and northeast corners of Arbor Vitae St./Frontage Rd., and the southeast corner of Arbor Vitae St./Crenshaw Blvd. require reconstruction to meet ADA Standards

| TOTAL COST | $43,910 |

![Diagram of proposed improvements](image)
## W Crenshaw Blvd. & W. Arbor Vitae St. (North)

### Existing

- Signalized T-intersection
- Transverse-line crosswalks on the north and east legs
  - No pedestrian crossing permitted on the south leg
- Countdown signals on the north and east legs
- Automatic recall to pedestrian signals on the east leg
- Protected left-turn signal phasing to the east leg (SB)
- Permissive left-turn signal phasing to the south leg (EB)
- On-street parking permitted on the east leg and the east side of the north leg

### Proposed

<table>
<thead>
<tr>
<th>Improvement</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add white continental crosswalks to the north and east legs (2)</td>
<td>$1,350</td>
</tr>
<tr>
<td>Add advance stop lines to the north and east legs (2)</td>
<td>$480</td>
</tr>
<tr>
<td>Add curb extensions to both sides of the east leg (2)</td>
<td>$30,000</td>
</tr>
</tbody>
</table>

### ADA Barrier Removal

Refer Chapter 8, ADA Transition Framework Plan, for more details

- The curb ramps on the northwest corner requires reconstruction to meet ADA Standards
  $3,500

### Total Cost

$35,330
15 CRENSHAW BLVD. & W. 90TH ST./PINCAY DR.

EXISTING

- Signalized intersection
- Transverse-line crosswalks on all legs
  - Driveway on the east side of the south leg crosswalk currently functions as a curb ramp
- Countdown signals on the north, east and south legs
  - No countdown signals on the west leg (NB direction)
- Automatic recall to pedestrian signals on the east and west legs
- Protected left-turn phasing to the west leg (NB)
- Protected-permissive left-turn signal phasing to the north leg (EB)
- Permissive left-turn signal phasing to the south leg (WB)
- On-street parking permitted on the east leg, the east side of the south leg, and the east side of the north leg
- Landscaped hedges on the southwest corner block the view of pedestrians crossing the west and south legs

PROPOSED

<table>
<thead>
<tr>
<th>IMPROVEMENT</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add white continental crosswalks to all legs (4)</td>
<td>$2,400</td>
</tr>
<tr>
<td>- Move crosswalk on the south leg further north to address driveway access problem on the east side of the south leg</td>
<td></td>
</tr>
<tr>
<td>Add advance stop lines to all legs (4)</td>
<td>$1,080</td>
</tr>
<tr>
<td>Reduce the curb return on the southwest corner and the east side of the south leg (2)</td>
<td>$20,000</td>
</tr>
<tr>
<td>Add a curb ramp to the east side of the south leg and the west side of the north leg (2)</td>
<td>$7,000</td>
</tr>
<tr>
<td>Add a countdown signal to the pedestrian signal head on the west leg (NB direction)</td>
<td>$300</td>
</tr>
<tr>
<td>Trim landscaping on the southwest corner to improve crossing visibility</td>
<td></td>
</tr>
</tbody>
</table>

ADA BARRIER REMOVAL

REFER CHAPTER 8, ADA TRANSITION FRAMEWORK PLAN, FOR MORE DETAILS

- The curb ramps on the north side of the west leg and the northeast corner require reconstruction to meet ADA Standards | $7,000 |

TOTAL COST $37,780
16 CRENSHAW BLVD. & W. MANCHESTER AVE.

EXISTING

- Signalized intersection
- Transverse-line crosswalks on all legs
- Countdown signals on all legs
- Protected-permissive left-turn signal phasing on all legs
- On-street parking permitted on the south side of the east leg

PROPOSED

<table>
<thead>
<tr>
<th>IMPROVEMENT</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add white continental crosswalks to all legs (4)</td>
<td>$3,600</td>
</tr>
<tr>
<td>Add advance stop lines to all legs (4)</td>
<td>$1,440</td>
</tr>
<tr>
<td>Add bus bulbs on the south side of the west leg (1), north side of the east leg (1), and the west side of the north leg (1) (3 total)</td>
<td>$30,000</td>
</tr>
<tr>
<td>Consider shortening and/or closing the east most driveway on the south side of the west leg to accommodate the bus bulb</td>
<td></td>
</tr>
<tr>
<td>Add protected left-turn signal phasing to all legs (4)</td>
<td>$12,000</td>
</tr>
</tbody>
</table>

TOTAL COST $47,040
### Existing
- Signalized intersection
- Transverse-line crosswalks on all legs
- Countdown signals on all legs
- Protected left-turn signal phasing to the north and south legs (EB/WB)
- Protected-permissive left-turn signal phasing to the east and west legs (NB/SB)

### Proposed

<table>
<thead>
<tr>
<th>Improvement</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add white continental crosswalks to all legs (4)</td>
<td>$3,750</td>
</tr>
<tr>
<td>Add advance stop lines to all legs (4)</td>
<td>$1,560</td>
</tr>
<tr>
<td>Reduce the curb return on the southeast corner (1)</td>
<td>$10,000</td>
</tr>
<tr>
<td>Extend the median on the west leg (1)</td>
<td>$750</td>
</tr>
<tr>
<td>Add median noses to the west and east legs (2)</td>
<td>$750</td>
</tr>
<tr>
<td>Add protected left-turn signal phasing to the east and west legs (NB/SB)</td>
<td>$3,000</td>
</tr>
</tbody>
</table>

#### ADA Barrier Removal
- The curb ramp on the southwest corner requires reconstruction to meet ADA Standards $3,500

Total Cost $23,250
**S. PRAIRIE AVE. & W. 106TH ST.**

**EXISTING**
- No marked crosswalks
- Unsignalized off-set intersection
- Two-way stop for 106th St.

**PROPOSED**

<table>
<thead>
<tr>
<th>IMPROVEMENT</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add a new white continental mid-block crosswalk (1)</td>
<td>$1,050</td>
</tr>
<tr>
<td>Add white continental crosswalks on the east and west legs (2)</td>
<td>$600</td>
</tr>
<tr>
<td>Add advance stop lines both approaches of the new crosswalk (2)</td>
<td></td>
</tr>
<tr>
<td>Add advance stop lines to the east and west legs (2)</td>
<td>$720</td>
</tr>
<tr>
<td>Add crossing islands to the new crosswalk (1 pair)</td>
<td>$7,500</td>
</tr>
<tr>
<td>Add curb ramps to the new crosswalk (2)</td>
<td>$7,000</td>
</tr>
<tr>
<td>Add curb extensions to both sides of the east and west legs (4)</td>
<td>$60,000</td>
</tr>
<tr>
<td>Investigate putting a half-signal with the new crosswalk (1)</td>
<td>$125,000</td>
</tr>
</tbody>
</table>

**TOTAL COST**

$201,870
**EXISTING**

- Signalized intersection
- Yellow transverse-line crosswalks on all legs
- Permissive left-turn signal phasing on all legs
- Countdown signals on all legs
- Missing curb ramp on the northwest corner
- On-street parking permitted on the south leg, the east side of the north leg, north side of the west leg, and south side of the east leg

**PROPOSED**

<table>
<thead>
<tr>
<th>IMPROVEMENT</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add yellow continental crosswalks to all legs (4)</td>
<td>$2,700</td>
</tr>
<tr>
<td>Add advance stop lines to all legs (4)</td>
<td>$1,200</td>
</tr>
</tbody>
</table>

**TOTAL COST**  

$3,900
### Crenshaw Blvd. & Imperial Hwy.

#### Existing

- Signalized intersection
- Transverse-line crosswalks on all legs
- Countdown signals on all legs
- Protected left-turn signal phasing on all legs

#### Proposed

<table>
<thead>
<tr>
<th>Improvement</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add white continental crosswalks to all legs (4)</td>
<td>$4,200</td>
</tr>
<tr>
<td>Add advance stop lines to all legs (4)</td>
<td>$960</td>
</tr>
</tbody>
</table>

#### ADA Barrier Removal

Refer Chapter 8, ADA Transition Framework Plan, for more details

- Curb ramps on the northeast and northwest corners require reconstruction to meet ADA Standards: $7,000

**Total Cost**: $12,160
E. FLORENCE AVE. & N. MARKET ST.

EXISTING

- Signalized T-intersection
- Transverse-line crosswalks on the west and south legs
- Automatic recall to pedestrian signals on the south leg
- Unprotected crosswalk for EB right-turn pocket crossing at Market St.
- Protected left-turn signal phasing to the south leg (WBL)
- Permissive left-turn signal phasing to the west leg (NBL)
- Countdown signals on the west and south legs
- On-street parking permitted on the south leg (angled parking)

PROPOSED

<table>
<thead>
<tr>
<th>IMPROVEMENT</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add white continental crosswalks to the west, south, and east legs (3)</td>
<td>$2,700</td>
</tr>
<tr>
<td>Add advance stop lines to the west, south, and east legs (2)</td>
<td>$1,080</td>
</tr>
<tr>
<td>Add a curb extension to the east side of the south leg (1)</td>
<td>$15,000</td>
</tr>
<tr>
<td>Widen the median on the south leg (1)</td>
<td>$2,400</td>
</tr>
<tr>
<td>Remove the green painted buffer on the east leg and shift WB travel lanes further south to accommodate protected bike lanes along Florence Ave. (1)</td>
<td>$4,500</td>
</tr>
<tr>
<td>Narrow the median to 6’ and the turn lane to 9’ in order to create space for an 8’ wide bus stop island on the northeast corner</td>
<td>$800</td>
</tr>
<tr>
<td>Add median noses to the east and west legs (2)</td>
<td>$720</td>
</tr>
</tbody>
</table>

TOTAL COST $27,200
## E. FLORENCE AVE. & N. LA BREA AVE.

### EXISTING
- Signalized intersection
- Transverse-line crosswalks on all legs
- Countdown signals on all legs
- Protected left-turn signal phasing on all legs
- On-street parking permitted on the south leg

### PROPOSED

<table>
<thead>
<tr>
<th>IMPROVEMENT</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add white continental crosswalks to all legs (4)</td>
<td>$3,750</td>
</tr>
<tr>
<td>Add advance stop lines to all legs (4)</td>
<td>$1,560</td>
</tr>
<tr>
<td>Truncate the medians on the west and east legs (2)</td>
<td>$1,000</td>
</tr>
<tr>
<td>Add median noses to the west and east legs (2)</td>
<td>$220</td>
</tr>
<tr>
<td>Reduce the curb return on the northwest and southwest corners (2)</td>
<td>$20,000</td>
</tr>
<tr>
<td>Add curb extensions on the south side of the east leg (1) and the west side of the south leg (1)</td>
<td>$30,000</td>
</tr>
<tr>
<td>Remove painted buffer on the south leg and shift NB travel lanes further west to accommodate a bus bulb on the east side of the south leg (1)</td>
<td>$4,500</td>
</tr>
<tr>
<td>Add leading pedestrian interval to all legs (4)</td>
<td>$1,200</td>
</tr>
</tbody>
</table>

### ADA BARRIER REMOVAL
- The curb ramp on the northwest corner requires reconstruction to meet ADA Standards

### TOTAL COST
- **$65,230**
E. FLORENCE AVE. & CENTINELA AVE.

EXISTING

- Existing
- Signalized T-intersection
- Yellow transverse-line crosswalks on the north and west legs (north leg under construction during time of fieldwork)
- Countdown signals on the west leg (north leg under construction during time of fieldwork)
- Protected-permissive left-turn signal phasing to the north leg (EB)
- Permissive signal phasing to the east leg (SB)

PROPOSED

<table>
<thead>
<tr>
<th>IMPROVEMENT</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add yellow continental crosswalks to the west, north, and east legs (3)</td>
<td>$3,450</td>
</tr>
<tr>
<td>Add advance stop lines to the west, north, and east legs (3)</td>
<td>$1,320</td>
</tr>
<tr>
<td>Add a median nose to the east leg (1)</td>
<td>$360</td>
</tr>
<tr>
<td>Add protected islands to buffer the bike lanes on the east leg (2)</td>
<td>$360</td>
</tr>
<tr>
<td>Consider removing one WB right-turn lane to accommodate WB protected bike lanes along Florence Ave.</td>
<td>$360</td>
</tr>
</tbody>
</table>

ADA BARRIER REMOVAL

REFER CHAPTER 8, ADA TRANSITION FRAMEWORK PLAN, FOR MORE DETAILS

- The curb ramp on the southwest corner requires reconstruction to meet ADA Standards | $3,500 |

TOTAL COST | $8,990
24 E. FLORENCE AVE. & N. PRAIRIE AVE.

EXISTING
- Signalized T-intersection
- Continental crosswalk on the south leg (faded)
- Transverse-line crosswalk on the east leg
- Protected left-turn signal phasing on the south leg (WB traffic)

PROPOSED

<table>
<thead>
<tr>
<th>IMPROVEMENT</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add white continental crosswalks to the west, south, and east legs (3)</td>
<td>$3,150</td>
</tr>
<tr>
<td>Add advance stop lines to the west, south, and east legs (3)</td>
<td>$1,440</td>
</tr>
<tr>
<td>Add a large curb extension on the southwest corner to cross Prairie Ave. (1)</td>
<td>$20,000</td>
</tr>
<tr>
<td>Add countdown signals to the west, south, and east legs (6)</td>
<td>$900</td>
</tr>
<tr>
<td>Consider moving the north bus stop located west of Prairie Ave. to the east of Prairie Ave. (allows direct crossing to more destinations)</td>
<td>$1,000</td>
</tr>
<tr>
<td>Add protected left-turn signal or similar phasing to the west leg (NB) (1)</td>
<td>$3,000</td>
</tr>
</tbody>
</table>

ADA BARRIER REMOVAL

REFER CHAPTER 8, ADA TRANSITION FRAMEWORK PLAN, FOR MORE DETAILS
- The curb ramp on the southeast corner requires reconstruction to meet ADA Standards $3,500

TOTAL COST $32,990
CENTINELA AVE. & E. BEACH AVE.

EXISTING

- No marked crosswalks
- On-street parking permitted on the west leg, north leg, and east side of the south leg

PROPOSED

<table>
<thead>
<tr>
<th>IMPROVEMENT</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add white continental crosswalks to the north and west legs (2)</td>
<td>$1,050</td>
</tr>
<tr>
<td>Add an advance stop line to the west leg (1)</td>
<td>$120</td>
</tr>
<tr>
<td>Add advance yield lines to both approaches to the north leg crosswalk (2)</td>
<td>$192</td>
</tr>
<tr>
<td>Add user-activated Rectangular Rapid-Flash Beacons (RRFB) to the north leg crosswalk (1)</td>
<td>$25,000</td>
</tr>
<tr>
<td>Consider adding pedestrian hybrid beacons instead of RRFB</td>
<td></td>
</tr>
<tr>
<td>Add R1-5 signs to both approaches to the north leg crosswalk (2)</td>
<td>$1,000</td>
</tr>
<tr>
<td>Add R1-6 signs to the north leg crosswalk (2)</td>
<td>$1,000</td>
</tr>
<tr>
<td>Remove one parking space on the east side of the north leg and add a curb extension that extends to the crosswalk on the north leg (1)</td>
<td>$20,000</td>
</tr>
</tbody>
</table>

ADA BARRIER REMOVAL

REFER CHAPTER 8, ADA TRANSITION FRAMEWORK PLAN, FOR MORE DETAILS

- The curb ramps on the northwest and southwest corners require reconstruction to meet ADA Standards | $7,000 |

TOTAL COST $56,724
26 CENTINELA AVE. & N. LA BREA AVE.

EXISTING
- Signalized intersection
- Transverse-line crosswalks on all legs
- Countdown signals on all legs
- Protected left-turn signal phasing to the west and east legs (NB/SB)
- Permissive left-turn signal phasing to the north and south legs (EB/WB)
- On-street parking permitted on the north leg, west leg, and east side of the south leg

PROPOSED

<table>
<thead>
<tr>
<th>IMPROVEMENT</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add white continental crosswalks to all legs (4)</td>
<td>$3,900</td>
</tr>
<tr>
<td>Add advance stop lines to all legs (4)</td>
<td>$1,920</td>
</tr>
<tr>
<td>Add protected left-turn signal phasing to the north and south legs (EB/WB)</td>
<td>$6,000</td>
</tr>
</tbody>
</table>

**TOTAL COST** $11,820
N. LA BREA AVE. & FAIRVIEW BLVD.

EXISTING
- Signalized intersection
- Transverse-line crosswalks on all legs
- Countdown signals on all legs
- Automatic recall to pedestrian signals on the east and west legs
- Permissive left-turn signal phasing on all legs
- On-street parking permitted on all legs

PROPOSED

<table>
<thead>
<tr>
<th>IMPROVEMENT</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add white continental crosswalks to all legs (4)</td>
<td>$2,400</td>
</tr>
<tr>
<td>Add advance stop lines to all legs (4)</td>
<td>$1,200</td>
</tr>
</tbody>
</table>

TOTAL COST  $3,600
SPECIAL PEDESTRIAN PROJECT
WALK OF CHAMPIONS

At the community workshop, stakeholders discussed having designated a walking route, a “Walk of Champions”, that would connect the upcoming Downtown Ingelwood Metro Crenshaw/LAX Line station with the Los Angeles Rams stadium and the Forum. The walk could potentially start from the Metro La Brea/Florence station, route south down Market Street, east along Manchester Boulevard and then south along Prairie Avenue to get to the Forum and proposed Stadium site. Alternatively, a walking route from the Metro Hawthorne/Lennox Green Line station to the stadium site was also discussed.

The walk could be a reflection when “Inglewood: The City of Champions” transformed the City into one of American sports’ most recognizable destinations. The walk could feature the history of the Los Angeles Lakers dominating professional basketball at the Forum before they left for the Staples Center in 1999. It would also celebrate the return of the Rams to Los Angeles since 1994. Placemaking tactics for streetscape improvements would flank the walking path so that it is distinguishable and enhances the pedestrian environment:

- historical plaques
- statues of players, coaches
- helmets on lampposts
- jersey displays
- “Ram”-themed footprints or “Charger Thunderbolts” painted along the walking route to highlight the pathway

WAYFINDING

Refer to Appendix A, Design Toolbox for design guidance on wayfinding signage for pedestrian facilities.
'WALK OF CHAMPIONS' POTENTIAL WALK ROUTES

LEGEND
1/2 mile walk radius
potential walk routes

MAP 7.4 WALK OF CHAMPIONS

LOS ANGELES RAMS "FOOTPRINTS" ON SIDEWALKS COULD DESIGNATE "WALK OF CHAMPIONS"
CHAPTER 8

City of Inglewood Active Transportation & Safe Routes to School Master Plan
AMERICANS WITH DISABILITIES (ADA) TRANSITION FRAMEWORK PLAN

It is important to note that the intention of this plan is not to meet a complete ADA Transition Plan requirement, but rather provide guidelines and the way forward for the City of Inglewood. For purposes of this Framework Plan, the 27 pedestrian intersection locations found in Chapter 7: Proposed Pedestrian Facilities Plan, were evaluated against the accepted ADA Accessibility Guidelines.
The Americans with Disabilities Act (ADA) was enacted on July 26, 1990, and provides comprehensive civil rights protections to persons with disabilities in the areas of employment, state and local government services, and access to public accommodations, transportation, and telecommunications.

Cities and other government agencies are required to have an ADA self-assessment and transition plan when they grow beyond a threshold of 50 full-time equivalent employees. The City of Inglewood meets this minimum required and is therefore obligated to implement a full ADA self-assessment and transition plan. There are a number of different transition plans a city must conduct, with this one focused solely on accessibility within the public right-of-way. Lack of an ADA transition plan can prompt legal action from the Department of Justice, which oversees federal ADA compliance or can result in loss of Federal Highway Administration grants for transportation projects.

There are five titles or parts to the ADA of which Title II is most pertinent to travel within the public right-of-way. Title II of the ADA requires Public Entities to make their existing “programs” accessible “except where to do so would result in a fundamental alteration in the nature of the program or an undue financial and administrative burden.” Public rights-of-way are part of the City’s program.

In order to satisfy the requirements of ADA Title II Part 35, Subpart D – Program Accessibility § 35.150 (d)(3) cities must create an ADA Transition Plan. This federal mandate states:

The plan shall, at a minimum:

- identify physical obstacles in the public entity’s facilities that limit the accessibility of its programs or activities to individuals with disabilities;
- describe in detail the methods that will be used to make the facilities accessible;
- specify the schedule for taking the steps necessary to achieve compliance with this section and, if the time period of the transition plan is longer than one year, identify steps that will be taken during each year
- indicate the official responsible for implementation of the plan
- assign a budget to meet the schedule
- include people in the community who have disabilities in the planning and implementation
GUIDELINES ON ADA ACCESSIBILITY

The U.S. Access Board is an independent federal agency created in 1973 to ensure access to federal funded facilities. The U.S. Access Board's Proposed Guidelines for Pedestrian Facilities in the Public Right-of-Way, or PROWAG, was published for comment in 2011 but has not been adopted. Despite this delay, many cities currently use the 2011 proposed guidelines as their standards. When PROWAG is eventually adopted by United States Department of Justice (USDOJ), it will become an amended section to the 2010 ADA Standards, which is the document in which all federal ADA standards are collectively documented within. The facilities evaluated under this plan were compared to the 2011 PROWAG.

Other City facilities such as buildings, playground and pools are also subject to Title II program accessibility requirements but are governed under other ADA standards, not the PROWAG.

PROWAG guidelines are intended to ensure that sidewalks, pedestrian street crossings, pedestrian signals, and other facilities for pedestrian circulation and use constructed or altered in the public right-of-way by state and local governments are readily accessible to and usable by pedestrians with disabilities. According to PROWAG, the following list of pedestrian facilities located in the public right-of-way should be readily accessible and usable by pedestrians with disabilities:

- Sidewalks, pedestrian overpasses and underpasses, and other pedestrian circulation paths, including requirement for pedestrian access routes, alternate pedestrian access routes when pedestrian circulation paths are temporarily closed, and protruding objects along or overhanging pedestrian circulation paths;
- Pedestrian street crossings, medians, and pedestrian refuge islands, including requirements for curb ramps or blended transitions, and detectable warning surfaces;
- Pedestrian street crossings at roundabouts, including requirements for detectable edge treatments where pedestrian crossing is not intended, and pedestrian activated signals at multi-lane pedestrian street crossings;
- Pedestrian street crossings at multi-lane channelized turn lanes at roundabouts and at other signalized intersections, including requirements for pedestrian activated signals;
- Pedestrian signals, including requirements for accessible pedestrian signals and pedestrian pushbuttons;
- Transit stops and transit shelters for buses and light rail vehicles, including requirements for boarding and alighting areas at sidewalk or street level, boarding platforms, and route signs;
- Pedestrian at-grade rail crossings, including requirements for flangeway gaps;
- On-street parking that is marked or metered, and passenger loading zones;
- Pedestrian signs, including requirements for visible characters on signs and alternative requirements for audible sign systems and other technologies;
- Street furniture for pedestrian use, including drinking fountains, public toilet facilities, tables, counters, and benches; and
- Ramps, stairways, escalators, handrails, doors, doorways, and gates.

While this list is extensive and includes every aspect of pedestrian access in the public right-of-way, there are three primary components to gauge pedestrian accessibility: sidewalks, curb ramps, and pedestrian signals.
INVENTORY OF PHYSICAL BARRIERS

The team evaluated the 27 pedestrian locations, as sited in Chapter 7: Pedestrian Facilities Plan, and created an abbreviated self-assessment. Normally an ADA self-assessment includes a complete survey of ADA barriers in the pedestrian right-of-way. This typically includes surveying all aspects of the intersection as it relates to curb ramps, sidewalks, and pedestrian signal push buttons and crossings. Each of these pedestrian facilities are thoroughly assessed to identify possible ADA barriers. The barriers can typically include 5 different attributes for sidewalks, 20 attributes for curb ramps, 3 for crosswalks, and 8 attributes for barriers/hazards.

As part of the abbreviated self-assessment, this framework plan surveyed 8 attributes for curb ramps, differentiating between major and minor non-compliant, and identified whether an intersection corner had accessible pedestrian signals (APS).

Each existing curb ramp or street corner with missing curb ramps were recorded individually. When measures of the same attribute, such as flare slope (each ramp has two flares), differed, the worst measure for accessibility was considered.

The physical inventory for the 27 pedestrian locations included:

- Approximately 112 curb ramps
- Approximately 155 signal push-buttons
## Table 8.1. ADA Inventory for the 27 Pedestrian Locations

<table>
<thead>
<tr>
<th>#</th>
<th>Locations</th>
<th>Corners</th>
<th>Curved Ramps</th>
<th>Tactile/Detectable Warning Devices</th>
<th>Cross Slope</th>
<th>Running Slope</th>
<th>Flush Transition</th>
<th>Top Ramp Clearance</th>
<th>Top Ramp Cross Slope</th>
<th>Curved Ramps Flares</th>
<th>Accessible Pedestrian Signals (APS)</th>
<th>Obstructions</th>
<th>Barriers Removal Mitigated by Proposed Ped Improvements (In Chapter 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S. LA BREA AVE. &amp; E. QUEEN ST.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NE (north)</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>36°-47°</td>
<td>≤ 2%</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NE (south)</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>&gt;48°</td>
<td>≤ 2%</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NW</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>≥ 48°</td>
<td>≤ 2%</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>✓</td>
<td>X</td>
<td>3.30%</td>
<td>✓</td>
<td>✓</td>
<td>36°-47°</td>
<td>≤ 2%</td>
<td>✓</td>
<td>light post on right curb flare</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SW</td>
<td>✓</td>
<td>X</td>
<td>2.50%</td>
<td>✓</td>
<td>✓</td>
<td>≥ 48°</td>
<td>≥ 2%</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>S. LA BREA AVE. &amp; E. MANCHESTER BLVD.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>9.70%</td>
<td>✓</td>
<td>36°-47°</td>
<td>≥ 2%</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NW</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>≤ 36°</td>
<td>≤ 2%</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>✓</td>
<td>✓</td>
<td>2.60%</td>
<td>9.60%</td>
<td>✓</td>
<td>≤ 36°</td>
<td>≤ 2%</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SW</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>≤ 36°</td>
<td>≥ 2%</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>S. GREVILLEA AVE. &amp; ARBOR VITAE ST.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NE</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>10.80%</td>
<td>✓</td>
<td>≤ 36°</td>
<td>≤ 2%</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NW</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>9.60%</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE (west)</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>north</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE (east)</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SW</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>≤ 36°</td>
<td>≤ 2%</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>W. CENTURY BLVD. &amp; 405 Fwy On/Off-Ramps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>≥ 48°</td>
<td>≥ 2%</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SW</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>≥ 48°</td>
<td>≥ 2%</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>W. CENTURY BLVD. &amp; S. INGLEWOOD AVE.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NE</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>15.30%</td>
<td>✓</td>
<td>36°-47°</td>
<td>≤ 2%</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NW</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>13.50%</td>
<td>X</td>
<td>≥ 48°</td>
<td>≥ 2%</td>
<td>✓</td>
<td>top landing not accessible</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>≤ 36°</td>
<td>≤ 2%</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SW</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>missing curb ramp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>W. CENTURY BLVD. &amp; S. FIR AVE./FIRMONA AVE.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NE</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>16.90%</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>no top landing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NW</td>
<td>✓</td>
<td>X</td>
<td>2.80%</td>
<td>13.60%</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>no top landing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>9.50%</td>
<td>X</td>
<td>≥ 48°</td>
<td>≥ 2%</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SW</td>
<td>✓</td>
<td>X</td>
<td>5.80%</td>
<td>13.30%</td>
<td>X</td>
<td>36°-47°</td>
<td>≤ 2%</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>W. CENTURY BLVD. &amp; S. GREVILLEA AVE.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NE</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NW</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>≤ 36°</td>
<td>≤ 2%</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SW</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>≤ 36°</td>
<td>≥ 2%</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### TABLE 8.1. ADA INVENTORY FOR THE 27 PEDESTRIAN LOCATIONS (CONT.)

<table>
<thead>
<tr>
<th>#</th>
<th>LOCATIONS</th>
<th>CORNERS</th>
<th>CURB RAMP GUIDE</th>
<th>TACTILE/DETECTABLE WARNING DEVICES</th>
<th>CROSS SLOPE</th>
<th>RUNNING SLOPE</th>
<th>FLUSH TRANSITION</th>
<th>TOP RAMP CLEARANCE</th>
<th>TOP RAMP CROSS SLOPE</th>
<th>CURB RAMP FLARES</th>
<th>ACCESSIBLE PEDESTRIAN SIGNALS (APS)</th>
<th>BARRIES REMOVED OR MITIGATED BY PROPOSED PCC IMPROVEMENTS (IN CHAPTER 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2% (1:48) MAX</td>
<td>8.33% (1:24) MAX or 5% (1:20) MAX</td>
<td>ELEVATED TRANSITION</td>
<td>L% MAX.</td>
<td>36” - 47” FLARES ≤ 8.33 MAX</td>
<td>54” FLARES ≤ 5% MAX.</td>
<td>6” MAX.</td>
<td>R = 8.33% (1:24) MAX.</td>
</tr>
<tr>
<td>8</td>
<td>W. CENTURY BLVD. &amp; S. LA BREA AVE./HAWTHORNE BLVD.</td>
<td>NE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✗</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✗</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NW</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SW</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td>9</td>
<td>W. CENTURY BLVD. &amp; PRAIRIE AVE.</td>
<td>NE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✗</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NW</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SW</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td>10</td>
<td>W. CENTURY BLVD. &amp; CLUB DR.</td>
<td>NE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✗</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NW</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SW</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td>11</td>
<td>W. CENTURY BLVD. &amp; VILLAGE DR./S. 11TH ST.</td>
<td>NE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✗</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NW</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SW</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td>12</td>
<td>W. CENTURY BLVD. &amp; S. CRENshaw BLVD.</td>
<td>NE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✗</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NW</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SW</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td>13</td>
<td>S. CRENSHAW BLVD./W. ARBOR VITAE ST. (SOUTH)</td>
<td>NE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✗</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NW</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SW</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td>14</td>
<td>S. CRENSHAW BLVD./W. ARBOR VITAE ST. (NORTH)</td>
<td>NE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✗</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NW</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SW</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td>#</td>
<td>LOCATIONS</td>
<td>CORNERS</td>
<td>CURB RAMP EDGE</td>
<td>TACTILE/DETECTABLE WARNING DEVICES</td>
<td>CROSS SLOPE</td>
<td>RUNNING SLOPE</td>
<td>FLUSH TRANSITION</td>
<td>TOP RAMP CLEARANCE</td>
<td>TOP RAMP CROSS SLOPE</td>
<td>CURB RAMP FLARES</td>
<td>ACCESSIBLE PEDESTRIAN SIGNALS (APS)</td>
<td>OBSTRUCTIONS</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>15</td>
<td>S. CRENSHAW BLVD. &amp; W. 107TH ST./PINCAY DR.</td>
<td>NE</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔</td>
<td>4%</td>
<td>3%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NW</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔</td>
<td>4%</td>
<td>3%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔</td>
<td>4%</td>
<td>3%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SW</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔</td>
<td>4%</td>
<td>3%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>16</td>
<td>CRENSHAW BLVD. &amp; W. MANCHESTER AVE.</td>
<td>NE</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔</td>
<td>4%</td>
<td>3%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NW</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔</td>
<td>4%</td>
<td>3%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔</td>
<td>4%</td>
<td>3%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SW</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔</td>
<td>4%</td>
<td>3%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>17</td>
<td>W. MANCHESTER BLVD. &amp; S. PRAIRIE AVE.</td>
<td>NE</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔</td>
<td>4%</td>
<td>3%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NW</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔</td>
<td>4%</td>
<td>3%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔</td>
<td>4%</td>
<td>3%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SW</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔</td>
<td>4%</td>
<td>3%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>18</td>
<td>PRAIRIE AVE. &amp; W. 106TH ST.</td>
<td>NE</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔</td>
<td>4%</td>
<td>3%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NW</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔</td>
<td>4%</td>
<td>3%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔</td>
<td>4%</td>
<td>3%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SW</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔</td>
<td>4%</td>
<td>3%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>19</td>
<td>S. YUKON AVE. &amp; IMPERIAL HWY.</td>
<td>NE</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔</td>
<td>4%</td>
<td>3%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NW</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔</td>
<td>4%</td>
<td>3%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔</td>
<td>4%</td>
<td>3%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SW</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔</td>
<td>4%</td>
<td>3%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>20</td>
<td>CRENSHAW BLVD. &amp; IMPERIAL BLVD.</td>
<td>NE</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔</td>
<td>4%</td>
<td>3%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NW</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔</td>
<td>4%</td>
<td>3%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔</td>
<td>4%</td>
<td>3%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SW</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔</td>
<td>4%</td>
<td>3%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>21</td>
<td>E. FLORENCE AVE. &amp; N. MARKET ST.</td>
<td>NE</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔</td>
<td>4%</td>
<td>3%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NW</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔</td>
<td>4%</td>
<td>3%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔</td>
<td>4%</td>
<td>3%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SW</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔</td>
<td>4%</td>
<td>3%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>22</td>
<td>E. FLORENCE AVE. &amp; N. LA BREA AVE.</td>
<td>NE</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔</td>
<td>4%</td>
<td>3%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NW</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔</td>
<td>4%</td>
<td>3%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔</td>
<td>4%</td>
<td>3%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SW</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔</td>
<td>4%</td>
<td>3%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>LOCATIONS</td>
<td>CORNERS</td>
<td>CURB RAMP</td>
<td>TACTILE/DETECTABLE WARNING DEVICES</td>
<td>CROSS SLOPE</td>
<td>RUNNING SLOPE</td>
<td>FLUSH TRANSITION</td>
<td>TOP RAMP CLEARANCE</td>
<td>TOP RAMP CROSS SLOPE</td>
<td>CURB RAMP FLARES</td>
<td>ACCESSIBLE PEDESTRIAN SIGNALS (APS)</td>
<td>OBSTRUCTIONS</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>---------</td>
<td>-----------</td>
<td>-----------------------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>23</td>
<td>E. FLORENCE AVE. &amp; CENTINELA AVE.</td>
<td>NE</td>
<td>✘</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NW</td>
<td>✘</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>N/A</td>
</tr>
<tr>
<td>24</td>
<td>E. FLORENCE AVE. &amp; N. PRAIRIE AVE.</td>
<td>NE</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NW</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>✓</td>
</tr>
<tr>
<td>25</td>
<td>CENTINELA AVE. &amp; E. BEACH AVE.</td>
<td>NE</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NW</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>N/A</td>
</tr>
<tr>
<td>26</td>
<td>CENTINELA AVE. &amp; N. LA BREA AVE.</td>
<td>NE</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NW</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>✓</td>
</tr>
<tr>
<td>27</td>
<td>N. LA BREA AVE. &amp; FAIRVIEW BLVD.</td>
<td>NE</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NW</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SW</td>
<td>✓</td>
</tr>
</tbody>
</table>
CURB RAMPS

The majority of the existing curb ramps are non-compliant based on current ADA requirements. The data surveyed for verifying curb ramp compliance was divided into two overarching categories: major non-compliant and minor non-compliant. The findings conclude that most of the curb ramps in the city are non-compliant based on major non-compliance criteria Figure 8.1. For this plan, the team categorized major non-compliance as primarily attributable to four core criteria:

- The ramp width is too narrow; or
- The ramp running slope is too steep; or
- The ramp cross slope is too steep; or
- Missing tactile warning devices.

Curb ramps missing one or more of these core criteria gravely impacts accessibility. Lesser critical, yet still important aspects of curb ramp accessibility were categorized into minor non-compliance. The team defined minor non-compliance as attributable to:

- Not sufficient or existing top landing clearance; or
- Top landing clearance cross slope is too steep; or
- Curb ramp flares slopes are too steep; or
- Significant level changes in primary transition point.

The construction of many of the non-compliant ramps preceded implementation of ADA requirements. Leeway is given in the PROWAG to road grades and existing roadway geometric design, recognizing that in some circumstances the curb ramp can only be built to PROWAG requirements to the maximum extent feasible.

The curb ramps surveyed that did not include any of the 8 major or minor ADA barriers were considered compliant. It is important to note that all curb ramps were assessed broadly and only evaluated criteria that mainly determine accessibility.

FIGURE 8.2. CURB RAMP REQUIREMENTS

*ALTERATIONS:

CURB RAMP BASE: PARALLEL CURB RAMPS WITH NO TOP LANDING REQUIRE A 48” MIN. CURB RAMP BASE.

RUNNING SLOPE: BLENDED TRANSITIONS CANNOT EXCEED 1:20 MAX.

TOP LANDING/RAMP: FLARES THAT DO NOT EXCEED 1:12 REQUIRE A 36” MIN. TOP LANDING. FLARES THAT ARE GREATER THAN 1:12 BUT CANNOT EXCEED 1:10 REQUIRE A 48” MIN. TOP LANDING.
ACCESSIBLE PEDESTRIAN SIGNALS

Accessible Pedestrian Signals and Push Buttons is an integrated system that communicates to pedestrians in a visual, audible, and vibrotactile manner when to cross a street at a signalized intersection. Non-compliance is often primarily attributable to:

- Use of Style H-1 Push buttons
- Other non-APS style push buttons

While crossings with push buttons provide dedicated crossing time to the pedestrian, the use of APS push buttons are required to meet ADA standards. Non-APS locations in the City may be attributed to the crossing having not been upgraded since the requirement was put into place. All push buttons must be upgraded to APS when adjustments to the pedestrian push button crossing system are made at the location.

After surveying the 27 locations, the team recorded only one location where APS push buttons exist. This location is located on the southeast corner of the Century Boulevard and 405 on/off-ramp intersection. As noted in Chapter 7: Pedestrian Facilities Plan, the team recommends installing APS push buttons at all 27 pedestrian intersection locations.

RECOMMENDATIONS FOR REMOVAL

The City can utilize a number of methods to remove accessibility barriers in the public right-of-way. These methods range from stand-alone projects, removal of barriers as part of other City roadway projects and removal of barriers by development. In order for these methods to be effective, City practice and design standards must comply with federal ADA guidance. If they are not, new or reconstructed pedestrian facilities may not be constructed to accessibility standards, requiring costly revision, and increasing the duration it will take the City to remove accessibility barriers.

As part of Chapter 7: Pedestrian Facilities Plan, recommendations for improvements to pedestrian facilities were made. These recommendations were considered when evaluating necessary ADA barrier removal. A cross-reference of improvements that satisfied ADA barrier removal was completed. Figure 8.3 below demonstrates that the majority of required ADA barrier removal are contemplated in suggested recommendations found within the pedestrian plan. The remaining 36 percent of the projects identified in this ADA Framework Transition Plan the City will need to prioritize through other city improvement projects.

![Figure 8.3: Recommendations for Removal](image)
COST ESTIMATES

The planning level construction cost estimate to remove all identified barriers, not already included in Chapter 7: Pedestrian Facilities Plan, is $82,500 (in 2017$). Table 5-4 below shows a detailed accounting of each type of barrier, how each barrier would be resolved and the associated cost. Ramp reconstruction represents the largest overall cost, followed by installing or replacing detectable warning devices and upgrading or installing top landing.

<table>
<thead>
<tr>
<th>ADA DEFICIENCY</th>
<th>IMPROVEMENT TYPES</th>
<th>TOTAL QUANTITY</th>
<th>TOTAL PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CURB RAMPS</td>
<td>Curb ramp improvement (install/replace detectable warning surface)</td>
<td>23</td>
<td>$9,200</td>
</tr>
<tr>
<td>CURB RAMPS WITHOUT TRUNCATED DOMES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CROSSINGS MISSING CURB RAMPS</td>
<td>New curb ramp</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SUBSTANDARD RAMP LANDINGS</td>
<td>Curb ramp improvement (upgrade/install top landing)</td>
<td>2</td>
<td>$400</td>
</tr>
<tr>
<td>MAJOR NON-COMPLIANT RAMP</td>
<td>Curb ramp improvement (reconstruct existing ramp)</td>
<td>27</td>
<td>$94,500</td>
</tr>
<tr>
<td></td>
<td>TOTAL (IN 2017 $)</td>
<td>$104,100</td>
<td></td>
</tr>
</tbody>
</table>

SCHEDULE FOR REPAIRS

A key requirement of an ADA Transition Plan is development of a schedule which shows how long it will take the City to remove accessibility barriers. Understanding the financial resources needed to remove accessibility barriers is essential for developing such a schedule. Cities typically define a 20-year period for city-wide ADA barrier removal. For purposes of this abbreviated self-assessment and those barriers found within the 27 pedestrian locations, it is recommended that the City target ADA barrier removal within the next 10 years.
SAFE ROUTES TO SCHOOL PLAN

The City of Inglewood has embarked on an effort to improve safety at 17 schools. This Chapter will include Safe Routes to School (SRTS) plans for each school, and citywide efforts to support and complement the individual plans. This chapter details work completed thus far and future steps.

THERE ARE TWO PRIMARY PURPOSES OF A SRTS PLAN

1. TO MAKE IT SAFER FOR STUDENTS TO WALK AND BICYCLE TO SCHOOL

2. TO INCREASE THE NUMBER OF STUDENTS WALKING AND BICYCLING TO SCHOOL

In addition to safety benefits, there are health benefits for students who walk and bike to school. Environmental benefits result as fewer parents drive their children to school every day. Additionally, as children and families adopt more active lifestyles, their quality of life increases, they have more free time from driving and being driven less, and community relationships are strengthened. All of these benefits combine to create more livable neighborhoods surrounding schools where children walk or bike to school.
THE ‘SIX E’S’ OF SAFE ROUTES TO SCHOOL

This document contains a program for the ‘Six E’s’ of Safe Routes to School (SRTS) for making walking and bicycling safer and more attractive for Inglewood’s students and parents. The ‘Six E’s’ include the following:

- **ENGINEERING** — to make physical improvements to the routes that students use to walk or bicycle to school
- **ENCOURAGEMENT** — to promote walking and bicycling to school so more students choose to do so
- **EDUCATION** — to teach students safe walking and bicycling habits, to teach parents the importance of safe driving habits, and to emphasize health and environmental benefits
- **ENFORCEMENT** — to ensure that rules and laws of the road are followed, as well as safe pick-up and drop-off practices are adhered to at the schools

EXPERIENCE SHOWS THAT THE ‘SIX E’S’ APPROACH YIELDS SUCCESSFUL RESULTS IN BOTH MAKING OUR COMMUNITIES SAFER TO WALK AND BICYCLE IN, AND INCREASING THE NUMBER OF STUDENTS DOING SO.
THE SIXTH ‘E’: EMBRACING EQUITY

In the past several years, there’s been a real change not only in how the Safe Routes to School (SRTS) movement is talking about equity, but also in how it is playing out in community engagement, local processes, and ways in which a diversity of community experiences and perspectives impact decisions and promote inclusion.

This movement has recognized that in order to effectively achieve goals around increasing the number and safety of students walking and bicycling to school, it is essential to address the needs all demographic groups, with particular attention to low-income students and students of color.

EQUITY IS NOT TO BE CONFUSED WITH EQUALITY.

Equality is often interpreted as treating everyone the same, while equity means ensuring each individual has access to what they need to thrive. Equity recognizes that different people have different barriers to living healthy and successful lives. In order to allow people to get to the same outcome, we need to understand these barriers and opportunities that affect different groups, and create policies, programs, and strategies with these needs in mind.

Equity needs to be built into each of the five E’s of the SRTS approaches. In this chapter, equity will be incorporated both in analysis and action items to ensure that all SRTS initiatives seek to benefit students of all demographic groups.

THE SRTS PLANNING PROCESS

Nationally certified SRTS instructors from the consultant team facilitated the SRTS workshops. The workshops began with a presentation that described why SRTS is important, along with a sampling of engineering devices that can be applied to make walking and bicycling safer. After the presentation, stakeholder attendees walked around the school and identified safety concerns at particular locations along common routes to each school. Upon returning to the presentation room, attendees drew on large-scale maps of their schools and the surrounding areas. Each group marked common walking and cycling routes to their school and identified key issues and locations needing improvement. The groups identified general safety issues, as well as location-specific safety issues. These led to the creation of SRTS plans for each school.

The workshops were also used to recommend the formation of SRTS committees at each school. Ideally, these committees are led by parents, and have participation from school administration, students, crossing guards, various city departments, and the sheriff’s department, as well as neighborhood/community organizations.
EVALUATION

How do you gauge the progress of the SRTS program? Our methods include student tallies, traffic data, crash records, health assessments and other means to evaluate the outcome of SRTS. This section will also suggest the frequency and timing to conduct them. This evaluation should include an annual comparison of schools with SRTS projects over time.

THEY AIM TO EXAMINE THE FOLLOWING EFFORTS:

1. SCHOOLS THAT AIM TO INCREASE WALKING AND BICYCLING WHILE REDUCING THE NUMBER OF STUDENTS DRIVEN TO SCHOOL, AND

2. SCHOOLS THAT ADDRESS SAFETY PROBLEMS ALONG THE IDENTIFIED COMMON ROUTES TO SCHOOL IN THIS PLAN.

Understanding what happened and when it happened, while looking at results of the changes in travel mode and/or safety measures is important in determining SRTS program outcomes.

STUDENT TRAVEL TALLIES

For programs with goals to increase walking and bicycling, it is important to understand students’ travel modes (i.e. walking, bicycling, transit, carpool, family vehicle, etc.). A comparison between the initial results and the results after the implementation of the SRTS program should be overseen.

A baseline student tally should be conducted using the Travel Tally developed by the National Center for SRTS.

For multi-year funds, student travel data should be collected at least once every year; ideally, data would be collected every fall and spring for the project duration. Travel tallies should be done after completion of infrastructure projects that were paid for with Active Transportation Program funds. The City and/or schools may decide to use a simple tally where the homeroom teacher just asks for a show of hands of how students arrived at school that day.

PARENT SURVEYS

Parent surveys can help answer the attitudes and issues that may influence how students get to and from school. Understanding why students are—or are not—walking and bicycling is important.

The parent survey is the standardized survey developed by the National Center for SRTS. This short two-page survey asks for information about travel mode to school, what factors affect whether parents allow their children to walk or bike to school, the presence of key safety-related conditions along routes to school, and related background information.

The ideal method for distributing the parent survey is sending it home with students through “backpack mail” and having it returned by students. A 50% or more response rate is ideal. Other alternatives to distributing and completing the parent surveys could be during parent-teacher conferences, Parent-Teacher Association (PTA) meetings, and school events. It is important to also identify someone responsible for the distribution and collection the surveys.
CRASH RECORDS

For programs aiming to increase safety, crash data of bicycle and pedestrian-involved crash locations are the most direct method of assessing bicyclist and pedestrian safety. One way to measure the safety impact of SRTS is to examine the relationship between the SRTS project and the collisions between motor vehicles and school-age bicyclists and pedestrians. In this Plan, crash data has been collected for the five-year period 2009-2013. Crashes around each school can be tracked every year using the Transportation Injury Mapping System (TIMS) data.

TRAFFIC DATA

Average daily traffic (ADT) volumes provide the standard measurement for vehicle traffic on the road and are the basis for most decisions regarding street improvements and traffic calming projects. The City should track ADT volumes over time on key streets and common routes near schools. In this case, changes in ADT volumes before project implementation and after project completion may indicate changes in travel mode choice and overall safety.

SPEED SURVEYS

Another measure can include evaluating speed reductions in a SRTS project that include traffic-calming measures. Understanding how the infrastructure improvement has lead to changes in speeds, can determine the effectiveness of the SRTS program. The City can conduct speed surveys on a regular basis (every year or two) on key streets near schools where traffic calming measures have been placed. These surveys will yield prevailing speeds that can be compared over time.

FITNESS EXAMS

Most schools conduct fitness exams of students in certain grades. These can be compared year in and year out to see if students’ health are improving or declining.
SAFE ROUTES TO SCHOOL PLANS BY SCHOOL

The planned list of physical improvements along school routes are described in the following pages. Appendix A: Design Toolbox provides definitions and guidance on these improvements. The list gives the City projects that it can seek funds for. The City may want to change the list over time, as the list is conceptual. Engineering will need to be conducted prior to construction.

SRTS MINI-PLANS

This section contains 15 SRTS mini-plans for each of the 17 schools. In two cases, two schools have been combined together since the schools are located on the same adjoining parcel. These 15 SRTS mini-plans include the following schools:

A. ALBERT F. MONROE MAGNET MIDDLE SCHOOL & CLYDE WOODWORTH ELEMENTARY SCHOOL
B. BENNETT-KEW ELEMENTARY SCHOOL
C. BEULAH PAYNE ELEMENTARY SCHOOL
D. CENTINELA ELEMENTARY SCHOOL
E. CITY HONORS COLLEGE PREPARATORY ACADEMY (CHCPA) & CROZIER MIDDLE SCHOOL
F. CLAUDE HUDNALL ELEMENTARY SCHOOL
G. FRANK D. PARENT K-8 SCHOOL
H. HIGHLAND ELEMENTARY SCHOOL
I. INGLEWOOD HIGH SCHOOL
J. LA TIJERA K-8 ACADEMY OF EXCELLENCE CHARTER SCHOOL
K. MORNINGSIDE HIGH SCHOOL
L. OAK STREET ELEMENTARY SCHOOL
M. WARREN LANE ELEMENTARY SCHOOL
N. WILLIAM H. KELSO ELEMENTARY SCHOOL
O. WORTHINGTON ELEMENTARY SCHOOL
EXISTING CONDITIONS & ENGINEERING RECOMMENDATIONS

All of the engineering recommendations are subject to modification based on further study, changing conditions, funding availability, and other factors. The City retains flexibility to construct modified improvements. The City may also implement improvements incrementally as funding and opportunities arise. All improvements are subject to the approval of the Public Works Department and other appropriate City departments.

TRAFFIC CALMING: Any recommended traffic calming will have to follow standard City policies and procedures. Speed humps, for example, require signatures of support from 2/3 of the affected residents.

BULB-OUTS/CURB EXTENSIONS/REDUCED CURB RETURNS:

All recommended bulbs-outs, curb extensions, and reduced curb returns require further study to ensure adequate turning radii for larger vehicles, such as buses, large trucks, and emergency vehicles. All bulb-outs, curb extensions, and reduced curb returns will include perpendicular curb ramps and truncated dome tactile devices for the sight-impaired. All new curb ramps are assumed to include the truncated domes with tactile devices. Locations of proposed bulb-outs and curb extensions will need to be assessed for any potential drainage issues.

PEDESTRIAN SIGNALS: All pedestrian signals will include accessible pedestrian signals (APS) for the sight-impaired.

Appendix A: Design Toolbox provides definitions and guidance on these improvements.

BICYCLE PARKING

Each school and school district will determine the location of bicycle parking on school. Ideally, bicycle parking should be located conveniently for the users, in places where it will not conflict with pedestrians, near entrances and in visible locations for security.

PROGRAM PLAN

Programs were selected based on the various Education, Encouragement, and Enforcement programs spelled out in **Chapter 10: Programs & Evaluation**. Ideally, each of the schools would form their own SRTS committees to carry out these programs. It is anticipated that the programs will be modified and supplemented as experience with the programs grows.
A SRTS workshop was conducted on September 27, 2016. The following key stakeholders attended:

- School principal
- School community liaison
- Students
- Parents
- Representative from the City Planning Division

A SRTS workshop was conducted on September 12, 2016. The following key stakeholders attended:

- Parents
- Interim Principal
- Planning Manager Economic and Community Development Department
ISSUES RAISED AT THE SRTS WORKSHOP

ALBERT F. MONROE MAGNET MIDDLE SCHOOL

GENERAL

- Speeding
- Dangerous areas/alleys
- Pedestrian safety is a concern

CLYDE WOODWORTH ELEMENTARY SCHOOL

GENERAL

- Double parking
- Unattended cars
- Signal crossing too long (on Crenshaw Blvd.)
- Speeding
- Crossing at unmarked crosswalk locations
LOCATION-SPECIFIC CONCERNS ADDRESSED IN THIS PLAN

• **A1. W. 104th St. & Yukon Ave.**
  - Crossing needs improvement
  - Need to repaint faded crosswalk markings

• **A2. W. 104th St. & Dixon Ave.**
  - Crossing needs improvement
  - Motorists running stop sign

• **A3. W. 104th St. & Darby Ave.**
  - Speeding
  - Parking lot driveway conflicts on the south side of W. 104th St.
  - Crossing needs improvement
  - No curb ramps

• **A4. W. 104th St. & England Ave.**
  - Crossing needs improvement
  - No curb ramps

• **A5. W. 104th St. & Woodworth Ave.**
  - Crossing guard on-site
  - Crossing needs improvement

• **A6. W. 104th St. & S. 10th Ave.**
  - Speeding
  - Congestion backing up from intersection – look at signal timing
  - Lack of school signs
  - Lack of special education bus loading zone

• **A7. W. 104th St. & Crenshaw Blvd.**
  - Crossing guard on-site
  - Consider traffic signal
  - Consider right-turn channelization lanes on W. 104th St. onto S. 10th Ave.

OTHER RECORDED CONCERNS

• **W. Imperial Hwy. & Yukon Ave.**
  - Crossing needs improvement

• **W. 112th St. from Yukon Ave. to S. Lemoli Ave.**
  - Speeding

• **S. Lemoli Ave. from W. 109th St. to W. 111th St.**
  - Not a lot of pedestrian foot traffic
  - Street feels unsafe

• **Alley between S. Lemoli Ave. & Crenshaw Blvd. from W. 108th St. to W. 112th St.**
  - Alley needs improvement

• **Crenshaw Blvd. from W. 108th St. to W. 112th St.**
  - Lots of students walking after school

• **Crenshaw Blvd. from W. 104th St. to W. 108th St.**
  - Speeding

• **S. Doty Ave. from W. 110th St. to W. 112th St.**
  - Students bicycling

• **W. 104th St. & Crenshaw Blvd.**
  - Crossing needs improvement

• **S. 10th Ave. from W. 104th St. to School Entrance**
  - Narrow sidewalks
  - Students walking in the streets
  - Speeding

• **W. Century Blvd. & Crenshaw Blvd.**
  - Crossing needs improvement

• **S. 10th Ave. from W. 104th St. to Crenshaw Blvd. Frontage Road**
  - Dumping of trash and bulky items

• **Frontage Road from W. 104th St. to S.10th Ave**
  - Speeding

• **W. 104th St. from Yukon Ave. to Crenshaw Blvd.**
  - Speeding
  - Narrow sidewalks
  - Students biking on the sidewalks
  - Need to repaint faded crosswalk and road markings

• **W. 105th St. from S. Prairie Ave. to Yukon Ave.**
  - Speeding

• **Yukon Ave. from W. Century Blvd. to W. 108th St.**
  - Speeding

• **Crenshaw Blvd. from W.104th St. to W. 111th Pl.**
  - Speeding
The following map displays bicyclist and pedestrian involved crashes for a five-year period between 2009 and 2013.
The map below shows the proposed engineering projects along common routes used by students to get to school.
The map below shows the proposed engineering projects along common routes used by students to get to school.
A1. W. 104TH ST. & YUKON AVE. S.

EXISTING
- Signalized intersection
- Yellow transverse-line crosswalks on all legs
- Assembly D sign on the eastbound approach of the east leg
- Countdown signal on east side of the south leg crosswalk
- Permissive left-turn signal phasing for all legs
- On-street parking permitted on the west side of the north and south legs, and both sides of the east and west legs

PROPOSED
- Add a yellow continental crosswalk to all legs (4)
- Add an advance stop line to all legs (4)
- Add an Assembly D sign in advance of the Assembly C signs on both approaches of the north and south leg (2)
- Add countdown signals to the north, east and west leg crosswalks and the west side of the south leg crosswalk (7)
- Add curb extensions to the north and east legs (4)
A2. W. 104TH ST. & DIXON AVE.

EXISTING
- T-intersection
- 3-way stop
- On-street parking permitted on the north, east and west legs

PROPOSED
- Add a yellow continental crosswalk to the north, east, and west legs (3)
- Add an advance stop line to north, east, and west legs (3)
- Add curb extensions to the north, east, and west legs (6)
- Add pavement to south side of west leg crosswalk to connect the crosswalk with the sidewalk (1)

AMERICANS WITH DISABILITIES ACT (ADA)
MISSING INVENTORY FROM FIELD AUDIT

- MISSING CURB RAMP AND TACTILE WARNING DEVICE FOR THE SOUTH SIDE OF THE WEST LEG CROSSWALK
A3. W. 104TH ST. & DARBY AVE.

EXISTING
- T-intersection
- 1-way stop for Darby Ave.
- On-street parking permitted on the north, east and west legs
- SLOW SCHOOL XING pavement marker eastbound on W. 104th St.

PROPOSED
- Add a yellow continental crosswalk to the north leg (1)
- Add an advance stop line to the north leg (1)
- Add curb extensions to the north leg (2)
A4. W. 104TH ST. & ENGLAND AVE.

EXISTING
- T-intersection
- Uncontrolled intersection
- Yellow transverse-line crosswalk on the east leg
- Assembly B sign on the east leg crosswalk
- Assembly C sign on 104TH St. eastbound
- SLOW SCHOOL XING pavement markings on both approaches of the east leg
- On-street parking permitted on the north, east and west legs

PROPOSED
- Add a yellow continental crosswalk to the north and east legs (2)
- Add an advance yield line to both approaches of the east leg crosswalk and southbound approach of the north leg crosswalk (3)
- Add curb extensions to the north and east legs (4)
- Add pavement to south side of east leg crosswalk to connect the crosswalk to the sidewalk (1)
A5. W. 104TH ST. & WOODWORTH AVE.

EXISTING
- T-intersection
- 3-way stop
- Yellow transverse-line crosswalk on the west leg
- S1-1 sign on Woodworth Ave. southbound
- On-street parking permitted on the north, east, and west legs

PROPOSED
- Add a yellow continental crosswalk to the north and west legs (2)
- Add an advance stop line to the north and west legs (2)
- Add a curb ramp on the west side of the south leg adjacent to the parking (shown in yellow in graphic)
- Add a hatched painted marking adjacent school front parking (1)
- Add curb extensions to the north and west legs (4)

AMERICANS WITH DISABILITIES ACT (ADA)
MISSING INVENTORY FROM FIELD AUDIT
- MISSING TACTILE WARNING DEVICES ON THE SOUTH SIDE OF THE WEST LEG CROSSWALK AND ON THE EXISTING CURB RAMP ON THE EAST SIDE OF THE SOUTH LEG ADJACENT TO PARKING
A6. S. 10TH AVE. & W. 104TH ST.

EXISTING
- 2-way stop for S. 10th Ave.
- Yellow transverse-line crosswalk on west and south legs
- Assembly B sign for the west leg crosswalk
- Assembly D for the north leg crosswalk (misplaced)
- S1-1 sign on S. 10th St. southbound
- Assembly C sign on W. 104th St. westbound
- On-street parking on all legs

PROPOSED
- Add a yellow continental crosswalk to the north and south legs (2)
- Add a raised yellow continental crosswalk to the west leg (1)
- Add an advance stop line to the north and south leg crosswalks (2)
- Add an advance yield line to both approaches of the west leg crosswalk (2)
- Add a R1-6 sign to the west leg crosswalk (1)
- Add curb extensions to the north, south and west legs and the north side of the east leg (7)

AMERICANS WITH DISABILITIES ACT (ADA)
MISSING INVENTORY FROM FIELD AUDIT
- MISSING TACTILE WARNING DEVICE ON THE SOUTH SIDE CURB RAMP OF THE WEST LEG CROSSWALK
A7. CRENSHAW BLVD. & W. 104TH ST.

EXISTING
- Signalized intersection
- White transverse-line crosswalk on the south leg
- Protected left-turn signal phasing for westbound and eastbound travel (NB/SB)
- Permissive left-turn signal phasing for northbound and southbound travel (WB/EB)
- On-street parking permitted on the north and south legs of the frontage roads, and the east and west legs
- Bus stop on the west side of the south leg and the east side of the north leg

PROPOSED
- Add a white continental crosswalk to all legs (including the frontage roads) (4)
- Add an advance stop line to the south and north leg (main road only) (2)
- Add a median nose to the west side of south leg (frontage road) (1)
  - Align access to west side south leg bus stop with pedestrian crosswalk
- Add a median nose to the west side of the north leg (frontage road) (1)
  - Align access to west side south leg bus stop with pedestrian crosswalk
- Add curb extensions to the west leg, to the north side of the east leg, to the east side of the south leg of the eastern frontage road, to the west side of the north leg of the western frontage road, and to the west side of the western frontage road (6)
- Add countdown signals to the north and south leg crosswalks (4)
BICYCLE PARKING

ALBERT F. MONROE MAGNET MIDDLE SCHOOL

- Add racks for 20 bicycles as described in Appendix A: Design Toolbox. Add racks for 20 skateboards/scooters. Add more if needed.

CLYDE WOODWORTH ELEMENTARY SCHOOL

- Add racks for 10 bicycles as described in Appendix A: Design Toolbox. Add racks for 10 skateboards/scooters. Add more if needed.

PROGRAM PLAN

Stakeholders who attended the SRTS Workshop identified the following programs appropriate for their school site. In addition to participant-suggested programs are recommended best practices. These will be modified and supplemented as experience with the program grows.

ALBERT F. MONROE MAGNET MIDDLE SCHOOL

EDUCATION

- Pedestrian safety
- Proper drop-off procedures
- Parent driver safety
- Joint parent/student education
- Flyer distribution to parents during drop-off times
- Flyers for neighbors
- Marquis/advisory messages
- Mr. T “Monroe message”

ENCOURAGEMENT

- Walk to school day
- Community walk event
- Themed walk event: “be aware, be safe”
- Parent volunteers along walking routes
- Walking school buses
- Classroom competitions
- Fire up your feet (walk/bike logs)

ENFORCEMENT

- Speed cameras
- Police presence around school
- Partnership with Inglewood Police Department

CLYDE WOODWORTH ELEMENTARY SCHOOL

EDUCATION

- Pedestrian safety classes
- Bicycle safety classes
- Bike rodeos

ENCOURAGEMENT

- Stickers for students
- Punch cards
- Bicycle racks
- Park-and-walk program
- More designated pedestrian signs

ENFORCEMENT

- Police presence
- Parking enforcement

COST ESTIMATES

<table>
<thead>
<tr>
<th>ITEM DESCRIPTION</th>
<th>UNIT</th>
<th>UNIT PRICE</th>
<th>NUMBER</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continental crosswalks</td>
<td>Per lane</td>
<td>$150</td>
<td>47</td>
<td>$7,050</td>
</tr>
<tr>
<td>Advance stop lines</td>
<td>Per lane</td>
<td>$120</td>
<td>17</td>
<td>$2,040</td>
</tr>
<tr>
<td>Advance yield lines (sharks teeth)</td>
<td>Per lane</td>
<td>$96</td>
<td>4</td>
<td>$384</td>
</tr>
<tr>
<td>Signs</td>
<td>EA</td>
<td>$500</td>
<td>3</td>
<td>$1,500</td>
</tr>
<tr>
<td>Pavement connecting to sidewalk</td>
<td>SF</td>
<td>$20</td>
<td>50</td>
<td>$1,000</td>
</tr>
<tr>
<td>Curb ramps</td>
<td>EA</td>
<td>$3500</td>
<td>1</td>
<td>$3,500</td>
</tr>
<tr>
<td>Median noses</td>
<td>SF</td>
<td>$20</td>
<td>36</td>
<td>$720</td>
</tr>
<tr>
<td>Curb extension (bulbs-out) with curb ramps</td>
<td>EA (per corner)</td>
<td>$15000</td>
<td>33</td>
<td>$495,000</td>
</tr>
<tr>
<td>Countdown signals</td>
<td>EA</td>
<td>$300</td>
<td>11</td>
<td>$3,300</td>
</tr>
</tbody>
</table>

| TOTAL COST                                           |            |            |        | $514,494|
SRTS WORKSHOP

A SRTS workshop was conducted on May 23, 2017. The following key stakeholders attended:

- Students
- Parents
- Representative from the City Planning Department
ISSUES RAISED AT THE SRTS WORKSHOP

GENERAL
- Double-parking adjacent to school for afternoon dismissal
- General pedestrian safety
- Speeding on Imperial Hwy.
- Shortened crossing light interval
- School drop off/pick up circulation needs improvement
- Parking is a challenge

LOCATION-SPECIFIC CONCERNS ADDRESSED IN THIS PLAN

The following locations were identified in the workshop where crossings needed improvement:

- **B1.** W. Imperial Hwy. & S. Doty Ave.
- **B2.** W. 118th Pl. & Yukon Ave. S.
- **B3.** W. 117th St. & S. Cherry Ave.
- **B4.** W. 118th St. & S. Cherry Ave.
- **B5.** W. 118th Pl. & S. Cherry Ave.
- **B6.** W. 117th St. & Dehn Ave. S.
  - Two crossing guards on-site
- **B7.** W. 117th Pl. & Dehn Ave. S.
  - Double parking in the afternoon after school dismissal
- **B8.** W. 118th St. & Dehn Ave. S.

OTHER RECORDED CONCERNS

The following additional locations were identified in the workshop where crossings needed improvement:

- W. Imperial Hwy. & Crenshaw Blvd.
- W. Imperial Hwy. & Simms Ave.
- W. Imperial Hwy. & Lemoli Ave.
- W. Imperial Hwy. & Dehn Ave.
- W. Imperial Hwy. & S. Cherry Ave.
- W. 115th St. & S. Cherry Ave.
- W. 116th St. & S. Cherry Ave.
- W. Imperial Hwy. & Yukon Ave. S.
- W. 115th St. & Yukon Ave. S.
- W. 116th St. & Yukon Ave. S.
- W. 117th St. & Yukon Ave. S.
- W. 118th St. & Yukon Ave. S.
The following map displays bicyclist and pedestrian involved crashes for a five-year period between 2009 and 2013.
The map below shows the proposed engineering projects along common routes used by students to get to school.

**BENNETT-KEW ELEMENTARY SCHOOL COMMON ROUTES TO SCHOOL MAP**

The map below shows the proposed engineering projects along common routes used by students to get to school.
B1. W. IMPERIAL HWY. & S. DOTY AVE.

EXISTING
- Signalized intersection
- White transverse-line crosswalk on all legs
- Countdown signals on the north leg crosswalk (Note: missing push button on northwest corner)
- Automatic recall to the pedestrian signal on the eastbound approach of the north leg
- Permissive left-turn signal phasing for all legs
- On-street parking on the south, west, and east legs and the eastside of the north leg
- Bus stops on the south side of the west leg and the north side of the east leg
- (Note: Missing pedestrian crossing screen for the westbound approach of the north leg crosswalk)

PROPOSED
- Add a white continental crosswalk to all legs (4)
- Add an advance stop line to all legs (4)
- Reduce the curb return to the southeast corner (1)
- Add curb ramp on the north side of the west leg crosswalk (1)
- Add a tactile warning device on the west side of the north leg crosswalk (1)
- Add a bus bulb to the north side of the east leg and the south side of the west leg (2)

AMERICANS WITH DISABILITIES ACT (ADA)
MISSING INVENTORY FROM FIELD AUDIT
- MISSING CURB RAMPS ON THE WEST LEG CROSSWALK
- MISSING TACTILE WARNING DEVICES ON ALL CORNERS
B2. W. 118TH PL & YUKON AVE. S.

EXISTING
- 4-way stop
- Yellow transverse-line crosswalks on the north, west, and east legs
- On-street parking on the north, east, and west legs

PROPOSED
- Add a white continental crosswalk to all legs (4)
- Add an advance stop line to all legs (4)
- Add curb extensions to all legs (8)

AMERICANS WITH DISABILITIES ACT (ADA)
MISSING INVENTORY FROM FIELD AUDIT
☐ MISSING TACTILE WARNING DEVICES ON THE NORTHEAST, NORTHWEST, AND SOUTHEAST CORNERS
B3. W. 117TH ST. & S. CHERRY AVE.

EXISTING
- 4-way stop
- Yellow transverse-line crosswalks on all legs
- Assembly D sign on the eastbound approach of the west leg
- SLOW SCHOOL XING on westbound approach of the east leg
- On-street parking on all legs

PROPOSED
- Add a yellow continental crosswalk to all legs (4)
- Add an advance stop line to all legs (4)
- Add curb extensions to all legs (8)
**B4. W. 118TH ST. & S. CHERRY AVE.**

**EXISTING**
- T-intersection
- 3-way stop
- Yellow transverse-line crosswalk on the west and south legs
- Assembly D sign on the eastbound approach of the west leg
- SLOW SCHOOL XING pavement markings on the southbound approach of the north leg and northbound approach of the south leg
- On-street parking on the north, south, and west legs

**PROPOSED**
- Add a yellow continental crosswalk to the south and west legs (2)
- Add an advance stop line to the south and west legs (2)
- Add curb extensions to the south and west legs (4)
- Add new pavement on the east side of the south leg crosswalk to connect to the sidewalk (1)
- Add a tactile warning device on the west side of the north leg (1)

**AMERICANS WITH DISABILITIES ACT (ADA)**
**MISSING INVENTORY FROM FIELD AUDIT**
- **MISSING CURB RAMP ON THE EAST SIDE OF THE SOUTH LEG CROSSWALK**
- **MISSING TACTILE WARNING DEVICES ON THE NORTHWEST, SOUTHWEST, AND SOUTHEAST CORNERS**
**B5. W. 118TH PL. & S. CHERRY AVE.**

**EXISTING**
- L-intersection
- 1-way stop for S. Cherry Ave.
- Yellow transverse-line crosswalk on the north leg
- Assembly D sign on the eastbound approach of the west leg
- On-street parking on the north and west legs

**PROPOSED**
- Add a yellow continental crosswalk to the north leg (1)
- Add an advance stop line to the north leg (1)
- Add a curb extension to the west side of the north leg crosswalk (1)
- Add a curb ramp to the east side of the north leg crosswalk (1)

---

**AMERICANS WITH DISABILITIES ACT (ADA)**

**MISSING INVENTORY FROM FIELD AUDIT**

- **MISSING CURB RAMPS FOR THE NORTH LEG CROSSWALK**
- **MISSING TACTILE WARNING DEVICES** on the northeast and northwest corners
B6. W. 117TH ST. & DEHN AVE. S.

EXISTING
- T-intersection
- 3-way stop
- Yellow transverse-line crosswalk for the south, west and east legs
- Assembly D signs on the southbound approach of the north leg and westbound approach of the east leg
- SLOW SCHOOL XING pavement markings on the northbound approach of the south leg and southbound approach of the north leg
- On-street parking on all legs

PROPOSED
- Add a yellow continental crosswalk to the west, east, and south legs (3)
- Add an advance stop line to the east, west, and south legs (3)
- Add curb extensions to the west and south legs (4)
- Add pavement on the east side of the south leg crosswalk to connect to the sidewalk
- Add a tactile warning device on the northeast and southeast corners

AMERICANS WITH DISABILITIES ACT (ADA)
MISSING INVENTORY FROM FIELD AUDIT
- MISSING CURB RAMPS ON THE WEST AND SOUTH LEGS
- MISSING TACTILE WARNING DEVICES ON ALL CORNERS
B7. W. 117TH PL. & DEHN AVE. S.

EXISTING
- T-intersection
- 1-way stop for W. 117th Pl.
- Yellow transverse-line crosswalk on the east leg
- Assembly D sign on the westbound approach of the east leg
- On-street parking on the north, south, and east legs

PROPOSED
- Add a yellow continental crosswalk to the east leg (1)
- Add an advance stop line to the east leg (1)
- Reduce the curb returns on the east leg (2)
B8. W. 118TH ST. & DEHN AVE. S.

EXISTING
- T-intersection
- 1-way stop for W. 118th St.
- Yellow transverse-line crosswalks on the north and east legs
- Assembly D sign on the westbound approach of the east leg
- SLOW SCHOOL XING pavement marking on the northbound approach of the south leg and southbound approach of the north leg
- On-street parking on the north, south, and east legs

PROPOSED
- Add a yellow continental crosswalk to the north and east legs (2)
- Add an advance stop line to the east leg (1)
- Add an advance yield line to both approaches of the north leg (2)
- Add an Assembly D sign to both approaches of the north leg crosswalk (2)
- Add R1-6 sign to the north leg crosswalk (1) or S1-1/W16-7P (double backed) and both sides of street
- Add a curb extension to the east side of the north leg (1)
- Add a tactile warning device on the west side of the north leg crosswalk and the south side of the east leg crosswalk
BICYCLE PARKING

- Add racks for 10 bicycles as described in Appendix A: Design Toolbox. Add racks for 10 skateboards/scooters. Add more if needed.

PROGRAM PLAN

Stakeholders who attended the SRTS Workshop identified the following programs appropriate for their school site. In addition to participant-suggested programs are recommended best practices. These will be modified and supplemented as experience with the program grows.

EDUCATION

- Pedestrian safety
- Helmet fitting workshop

ENCOURAGEMENT

- International Walk-to-School Day in October
- Walking school bus
- Park-and-walk program

ENFORCEMENT

- Parking enforcement
- Police presence along school route

COST ESTIMATES

<table>
<thead>
<tr>
<th>ITEM DESCRIPTION</th>
<th>UNIT</th>
<th>UNIT PRICE</th>
<th>NUMBER</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continental crosswalks</td>
<td>Per lane</td>
<td>$150</td>
<td>52</td>
<td>$7,800</td>
</tr>
<tr>
<td>Advance stop lines</td>
<td>Per lane</td>
<td>$120</td>
<td>27</td>
<td>$3,240</td>
</tr>
<tr>
<td>Advance yield lines (sharks teeth)</td>
<td>Per lane</td>
<td>$ 96</td>
<td>2</td>
<td>$ 192</td>
</tr>
<tr>
<td>Signs</td>
<td>EA</td>
<td>$ 500</td>
<td>3</td>
<td>$ 1,500</td>
</tr>
<tr>
<td>Reduced curb return and curb ramps</td>
<td>EA</td>
<td>$10,000</td>
<td>3</td>
<td>$30,000</td>
</tr>
<tr>
<td>Tactile warning devices</td>
<td>EA</td>
<td>$ 500</td>
<td>6</td>
<td>$ 3,000</td>
</tr>
<tr>
<td>Curb ramps</td>
<td>EA</td>
<td>$ 3,500</td>
<td>3</td>
<td>$10,500</td>
</tr>
<tr>
<td>Curb extension (bulbs-out) with curb ramps</td>
<td>EA (per corner)</td>
<td>$15,000</td>
<td>26</td>
<td>$390,000</td>
</tr>
<tr>
<td>Pavement connecting to sidewalk</td>
<td>SF</td>
<td>$ 20</td>
<td>50</td>
<td>$ 1,000</td>
</tr>
<tr>
<td>Bus bulbs</td>
<td>EA</td>
<td>$10,000</td>
<td>2</td>
<td>$20,000</td>
</tr>
</tbody>
</table>

**TOTAL COST** $467,232
A SRTS workshop was conducted on August 31, 2016. The following key stakeholders attended:

- Parents
- Teachers
- Assistant Principal
- Crossing Guards
- Representative from the City Planning Department
ISSUES RAISED AT THE SRTS WORKSHOP

GENERAL

• Speeding
• Lack of knowledge of laws and rules
• Loose dogs
• Crosswalk markings and signage worn out
• Lack of signage
• Lack of bicycle racks
• ADA not common

LOCATION-SPECIFIC CONCERNS ADDRESSED IN THIS PLAN

• **C1. W. 94th St. & S. Truro Ave. (North)**
  • Crossing guard on-site
  • Crossing needs improvement

• **C2. W. 94th St. & S. Truro Ave. (South)**
  • Crossing needs improvement

• **C3. W. 94th St. & S. Fir Ave.**
  • Lots of pedestrian crossing and vehicular traffic
  • Motorists do not yield to pedestrians crossing

OTHER RECORDED CONCERNS

• **W. Hardy St. & S. Inglewood Ave.**
  • Intimidating dogs

• **E. Arbor Vitae St. & S. Eucalyptus Ave.**
  • Crossing needs improvement
The following map displays bicyclist and pedestrian involved crashes for a five-year period between 2009 and 2013.
The map below shows the proposed engineering projects along common routes used by students to get to school.

BEULAH PAYNE ELEMENTARY SCHOOL COMMON ROUTES TO SCHOOL MAP

The map below shows the proposed engineering projects along common routes used by students to get to school.
C1. W. 94TH ST. & S. TRURO AVE. (NORTH)

EXISTING
- T-intersection
- 1-way stop for S. Truro Ave.
- Yellow transverse-line crosswalk on the north leg
- On-street parking on the north and west legs
- SLOW SCHOOL XING pavement markings on the southbound approach of the north leg crosswalk

PROPOSED
- Add a white continental crosswalk to the north leg (1)
- Add an advance stop line to the north leg (1)
- Add curb extensions to the north leg (2)
C2. W. 94TH ST. & S. TRURO AVE. (SOUTH)

EXISTING
- T-intersection
- 1-way stop for S. Truro Ave.
- Yellow transverse-line crosswalks on the south and east legs
- Assembly B signs on the east leg crosswalk (old Assembly B sign on the south side of the east leg crosswalk)
- SLOW SCHOOL XING pavement markings on the northbound approach of the south leg crosswalk and both approaches to the east leg crosswalk
- On-street parking on the south leg

PROPOSED
- Add yellow continental crosswalks to the east and south legs (2)
- Add an advance stop line to the south leg (1)
- Add advance yield lines to both approaches to the east leg crosswalk (2)
- Add Assembly D signs to both approaches to the east leg crosswalk (2)
- Add a R1-6 sign to the east leg crosswalk (1)
- Add curb extensions to the south leg (2) and the south side of the east leg (1) (3 total)
- Add a curb ramp to the north crossing face of the east leg (1)

AMERICANS WITH DISABILITIES ACT (ADA)
MISSING INVENTORY FROM FIELD AUDIT
- MISSING TACTILE WARNING DEVICES ON THE SOUTHEAST AND SOUTHWEST CORNERS
- MISSING CURB RAMP ON THE NORTH SIDE OF THE EAST LEG
**C3. W. 94TH ST. & S. FIR AVE.**

**EXISTING**
- T-intersection
- 3-way stop
- Yellow transverse-line crosswalks on the north, south and west legs
- On-street parking on the north and south legs

**PROPOSED**
- Add yellow continental crosswalks to the north, south and west legs (3)
  - Move north crosswalk north
- Add an advance stop line to the north, south and west legs (3)
- Add curb extensions to the north, south and west legs (6)
- Add LED-flashing lights on the stop signs for the north, south and west legs (3)
- Add pavement through the parkway on the east crossing face of the north leg to connect with the north leg crosswalk (1)

**AMERICANS WITH DISABILITIES ACT (ADA)**
- **MISSING INVENTORY FROM FIELD AUDIT**
  - **MISSING TACTILE WARNING DEVICE ON THE SOUTHWEST CORNER**
  - **MISSING CURB RAMPS ON THE EAST SIDE OF THE NORTH AND SOUTH LEGS**
BICYCLE PARKING

- Add racks for 10 bicycles as described in Appendix A: Design Toolbox. Add racks for 10 skateboards/scooters. Add more if needed.

PROGRAM PLAN

Stakeholders who attended the SRTS Workshop identified the following programs appropriate for their school site. In addition to participant-suggested programs are recommended best practices. These will be modified and supplemented as experience with the program grows.

EDUCATION

- Pedestrian safety classes for parents and students
- Bicycle safety classes
- Helmet fitting classes
- Health education
- Proper pick-up/drop-off procedures

ENCOURAGEMENT

- Walking school bus
- Contests
- Raffles
- Trophies
- Punch cards

ENFORCEMENT

- Animal control for loose dogs
- More crossing guards
- Assistance with school drop-off lane
- Increased police visibility

COST ESTIMATES

<table>
<thead>
<tr>
<th>ITEM DESCRIPTION</th>
<th>UNIT DESCRIPTION</th>
<th>UNIT PRICE</th>
<th>NUMBER</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continental crosswalks</td>
<td>Per lane</td>
<td>$150</td>
<td>10</td>
<td>$1,500</td>
</tr>
<tr>
<td>Advance stop lines</td>
<td>Per lane</td>
<td>$120</td>
<td>5</td>
<td>$600</td>
</tr>
<tr>
<td>Advance yield lines (sharks teeth)</td>
<td>Per lane</td>
<td>$96</td>
<td>2</td>
<td>$192</td>
</tr>
<tr>
<td>Signs</td>
<td>EA</td>
<td>$500</td>
<td>3</td>
<td>$1,500</td>
</tr>
<tr>
<td>Curb ramps</td>
<td>EA</td>
<td>$3,500</td>
<td>1</td>
<td>$3,500</td>
</tr>
<tr>
<td>Curb extension (bulbs-out) with curb ramps</td>
<td>EA (per corner)</td>
<td>$15,000</td>
<td>11</td>
<td>$165,000</td>
</tr>
<tr>
<td>Pavement connecting to sidewalk</td>
<td>SF</td>
<td>$20</td>
<td>25</td>
<td>$500</td>
</tr>
<tr>
<td>Add LED lights to stop signs with solar power</td>
<td>EA</td>
<td>$3,000</td>
<td>3</td>
<td>$9,000</td>
</tr>
</tbody>
</table>

**TOTAL COST** $181,792
A SRTS workshop was conducted on August 30, 2016. The following key stakeholders attended:

- Parents
- Grandparents
- School staff
- Parent-teacher association (PTA) representatives
- Representative from the City Planning Department

ISSUES RAISED AT THE SRTS WORKSHOP

GENERAL

- Speeding
- Parents/drivers not respecting crossing guards
- Illegal/double parking
- Driveway conflicts around school with cars and students
- Driver-side child drop-off, children crossing outside of crosswalk
LOCATION-SPECIFIC CONCERNS ADDRESSED IN THIS PLAN

- **D1.** E. Brett St. & N. Welton Way
  - No street lighting
  - Overgrown trees

- **D2.** E. Hillsdale St. & N. Welton Way & Wexham Way
  - Broken sidewalks
  - Intersection needs improvement

- **D3.** E. Hyde Park Blvd. & N. Welton Way
  - Crossing needs improvement

- **D4.** N. Marlborough Ave. & E. Brett St.
  - Crossing needs improvement

- **D5.** N. Marlborough Ave. & E. Hyde Park Blvd/ E. 65th St.
  - Speeding
  - Intersection needs improvement

- **D6.** N. Marlborough Ave. & E. 67th St.
  - No marked crosswalks

- **D7.** N. Marlborough Ave. & Stepney Pl.
  - Crossing needs improvement

- **D8.** N. Marlborough Ave. & Welton Way & Stepney St.
  - No marked crosswalks

- **D9.** N. Chester Ave. & E. Brett St.
  - Uneven sidewalks

- **D10.** N. Chester Ave. & E. 67th St.
  - Bicycling environment needs improvement

- **D11.** E. 66th St. & E. 67th St.
  - T-intersection with no stop signs

- **D12.** N. Wexham Way & Hargrave St.
  - Crossing needs improvement

OTHER RECORDED CONCERNS

- **E. Hyde Park Blvd. & E. 67th St.**
  - Broken sidewalks

- **E. Warren Ln. from Exton Ave. to Centinela Ave.**
  - Pedestrians walking on the street since both sides of the street have discontinuous or no sidewalks

- **E. 67th St. from N. Park Ave. to E. Chester Ave.**
  - Speeding

- **Alley west of West Blvd. from E. 65th St. to E. 67th St.**
  - Speeding in alley

- **Edward Vincent Jr. Park**
  - No lighting in the park
  - Park feels unsafe
Bicyclist and pedestrian involved crashes for a five-year period between 2009 and 2013.

CENTINELA ELEMENTARY SCHOOL CRASH MAP

1/2 Mile Buffer
School Boundary
Inglewood City Limits

Legend
Pedestrian Collision-Injury
Bike Collision-Injury
Pedestrian Collision-Minor
Bike Collision-Minor
Pedestrian Hit-by-Collision
Bike Hit-by-Collision

City of Inglewood Active Transportation & Safe Routes to School Master Plan
Proposed engineering projects along common routes used by students to get to school.

CENTINELA ELEMENTARY SCHOOL

COMMON ROUTES TO SCHOOL MAP

Proposed engineering projects along common routes used by students to get to school.
D1. E. BRETT ST. & N. WELTON WAY

EXISTING
- T-intersection
- 1-way stop for E. Brett St.
- No marked crosswalks
- On-street parking on all legs

PROPOSED
- Add a white continental crosswalk to the west leg (1)
- Add an advance stop line to the west leg (1)
- Add curb extensions to the west leg (2)
D2. E. HILLSDALE ST. & WELTON WAY & N. WEXHAM WAY

EXISTING
• 2-way stop for N. Wexham Way/E. Hillsdale St.
• On-street parking on all legs

PROPOSED
• Add a white continental crosswalk to all legs (4)
• Add an advance stop line to the east and west legs (2)
• Add an advance yield lines to both approaches of the north and south leg crosswalk (2)
• Add an Assembly B sign to the north and south leg crosswalk (2)
• Add an Assembly D sign to both approaches of the north and south leg crosswalk (2)
• Extend the curb on the northwest corner to align with existing gutter (ensure enough turning radii for vehicles) (1)
• Add curb ramp to the east side of the north leg crosswalk
• Add curb extensions to the east and south legs (4)
D3. E. HYDE PARK BLVD. & N. WELTON WAY

EXISTING
- 4-way stop
- Yellow transverse-line crosswalk on all legs
- Assembly C sign on E. Hyde Park Blvd. westbound
- On-street parking on all legs

PROPOSED
- Add a white continental crosswalk to all legs (4)
- Add an advance stop line to all legs (4)
- Add curb extensions to all legs (8)
D4. N. MARLBOROUGH AVE. & E. BRETT ST.

EXISTING

- 3-way stop (school driveway entrance/exit on the west leg)
- Yellow transverse-line crosswalk on the north, east, and south legs
- SLOW SCHOOL XING pavement marking on both approaches of the north and south legs
- On-street parking on all legs
- Angled parking on the west side of the north and south legs

PROPOSED

- Add yellow continental crosswalks to the north, east, and south legs (3)
- Add a yellow continental crosswalk to the north leg (1)
- Add an advance stop line to the north, east and south legs (3)
- Add curb extensions to the north, east, and south legs (6)
  - Add large curb extensions to the west crossing faces of the north and south legs to align with on-street angled parking

AMERICANS WITH DISABILITIES ACT (ADA) MISSING INVENTORY FROM FIELD AUDIT

- MISSING CURB RAMP ON THE WEST SIDE OF THE SOUTH LEG
- MISSING TACTILE WARNING DEVICES ON THE NORTHWEST AND SOUTHEAST CORNERS
D5. N. MARLBOROUGH AVE. & E. HYDE PARK BLVD./E. 65TH ST.

EXISTING
- 5-way stop
- Yellow transverse-line crosswalk on the north, south and west legs
- Advance stop line on the south leg
- Assembly C sign on E. Hyde Park Blvd. eastbound
- SLOW SCHOOL CROSSING pavement marking on the eastbound approach of the west leg (fading)
- On-street parking on all legs
  - Angled parking on the west side of the north leg
- Bus stop on the both sides of the west leg
- Crossing guard on-site

PROPOSED
- Add a yellow continental crosswalk to all legs (east leg crossing across both E. 65th St and E. Hyde Park Blvd.) (5)
- Add an advance stop line to the north, east (E. 65th St. and E. Hyde Park Blvd.), and west legs (3)
- Add curb extensions to the north leg (2), east leg (E. 65th St. and E. Hyde Park Blvd.) (4), and south leg (N. Malborough Ave.) (2) (8 total)
  - Curb extension on the west side of the north leg to align with on-street angled parking

AMERICANS WITH DISABILITIES ACT (ADA) MISSING INVENTORY FROM FIELD AUDIT
- BUS STOP ON SOUTH SIDE OF THE WEST LEG DOES NOT HAVE AN ACCESSIBLE 5’ X 8’ CLEARANCE
D6. N. MARLBOROUGH AVE. & E. 67TH ST.

EXISTING
- 2-way stop for E. 67th St.
- No marked crosswalks

PROPOSED
- Add a white continental crosswalk to all legs (4)
- Add an advance stop line to the east and west legs (2)
- Add an advance yield line on the southbound approach of the north leg and the northbound approach of the south leg (2)
- Add an Assembly B sign to the north and south leg crosswalks (4)
- Add an Assembly D sign on the southbound approach of the north leg and the northbound approach of the south leg (2)
- Add curb extensions to all legs (8)
D7. N. MARLBOROUGH AVE. & STEPNEY PL.

EXISTING
- T-intersection
- 1-way stop for Stepney Pl.
- No marked crosswalks
- On-street parking on the north, east, and south legs

PROPOSED
- Add a white continental crosswalk to the north and east legs (2)
- Add an advance stop line to the east leg (1)
- Add an advance yield line to both approaches of the north leg (2)
- Add an Assembly B sign to the north leg crosswalk (2)
- Add an Assembly D sign to both approaches of the north leg crosswalk (2)
- Add curb extensions to the north and east legs (4)

AMERICANS WITH DISABILITIES ACT (ADA)
MISSING INVENTORY FROM FIELD AUDIT
- MISSING TACTILE WARNING DEVICES ON THE NORTHEAST AND SOUTHEAST CORNERS
D8. N. MARLBOROUGH AVE. & WELTON WAY & STEPNEY ST.

EXISTING
- T-intersection
- 1-way stop for Welton Way & Stepney St.
- No marked crosswalks
- On-street parking on all legs

PROPOSED
- Add a white continental crosswalk on the west leg (crossing both Welton Way and Stepney St.) (2)
- Add an advance stop line to Welton Way & Stepney St. (2)
- Add curb extensions to the west leg (both crossing faces of Welton Way and Stepney St.) (4)

AMERICANS WITH DISABILITIES ACT (ADA)
MISSING INVENTORY FROM FIELD AUDIT
- MISSING CURB RAMPS AND TACTILE WARNING DEVICES ON THE NORTHWEST CORNER AND AT THE CORNER BETWEEN WELTON WAY & STEPNEY ST.
- MISSING TACTILE WARNING DEVICE ON THE SOUTHWEST CORNER

BEFORE
D9. N. CHESTER AVE. & E. BRETT ST.

EXISTING

- 2-way stop for E. Brett St.
- No marked crosswalks
- On-street parking on all legs

PROPOSED

- Add a white continental crosswalk to all legs (4)
- Add an advance stop line to the east and west legs (2)
- Add an advance yield line on the southbound approach of the north leg and the northbound approach of the south leg (2)
- Add an Assembly B sign to the north and south leg crosswalks (2)
- Add an Assembly D sign on the southbound approach of the north leg and the northbound approach on the south leg (2)
- Add curb extensions to all legs (8)
D10. N. CHESTER AVE. & E. 67TH ST.

EXISTING
- Uncontrolled intersection
- No marked crosswalks
- On-street parking on all legs

PROPOSED
- Add white continental crosswalks to the north and west legs (2)
- Add an advance yield line on the southbound approach of the north leg and both approaches of the west leg (3)
- Add an Assembly B sign to the north and west leg crosswalks (4)
- Add an Assembly D sign on the southbound approach of the north leg crosswalk and both approaches of the west leg crosswalk (3)
- Add new pavement south facing west leg crosswalk to connect curb extension
- Add curb extensions to the north and west legs (4)
D11. E. 66TH ST. & E. 67TH ST.

EXISTING
- 1-way stop for E. 66th St.
- No marked crosswalks
- On-street parking on all legs

PROPOSED
- Add a white continental crosswalk to the north leg (1)
- Add an advance stop line to the north leg (1)
- Add curb extensions to the north leg (2)
**D12. N. WEXHAM WAY & HARGRAVE ST.**

**EXISTING**
- 4-way stop
- Yellow transverse-line crosswalk on the east, south and west legs
- Advance stop line on the south leg
- Assembly B sign on the east and west legs (misplaced)
- SLOW SCHOOL XING pavement marking on both approaches of the west leg
- On-street parking on all legs

**PROPOSED**
- Add a yellow continental crosswalk to all legs (4)
- Add an advance stop line to the north, east and west legs (3)
- Add curb extensions to all legs (8)
- Add pavement on the east crossing face of the north leg and the south crossing face of the east leg to create accessible crosswalks (2)
BICYCLE PARKING

- Add racks for 10 bicycles as described in Appendix A: Design Toolbox. Add racks for 10 skateboards/scooters. Add more if needed.

PROGRAM PLAN

Stakeholders who attended the SRTS Workshop identified the following programs appropriate for their school site. In addition to participant-suggested programs are recommended best practices. These will be modified and supplemented as experience with the program grows.

EDUCATION

- Pedestrian safety education (increase ped visibility)
- Health/environmental benefits
- Proper pick-up/drop-off procedures
- Adult bicycle safety education (train the trainer)
- Robo-calls, parent meetings, back-to-school night, family nights
- Flyers
- Helmet safety class

ENCOURAGEMENT

- Classroom walking competitions (1-year free yogurt)
- Walking/biking events (1x/week)
- Prizes (more recess time, free bike, free healthy food [subway card], discounts with local businesses)
- Walking school buses
- Walking buddy program especially after school (corner captain program)

ENFORCEMENT

- E. Brett St. between N. Park Ave. & N. Malborough Ave.
  - Consider closing street for 20 minutes during morning drop-off
- Crossing guards
- Police presence around school
- Parking enforcement (restricted parking curing pick-up times is an issue)

COST ESTIMATES

<table>
<thead>
<tr>
<th>ITEM DESCRIPTION</th>
<th>UNIT</th>
<th>UNIT PRICE</th>
<th>NUMBER</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continental crosswalks</td>
<td>Per lane</td>
<td>$150</td>
<td>73</td>
<td>$10,950</td>
</tr>
<tr>
<td>Advance stop lines</td>
<td>Per lane</td>
<td>$120</td>
<td>27</td>
<td>$3,240</td>
</tr>
<tr>
<td>Advance yield lines (sharks teeth)</td>
<td>Per lane</td>
<td>$96</td>
<td>11</td>
<td>$1,056</td>
</tr>
<tr>
<td>Signs</td>
<td>EA</td>
<td>$500</td>
<td>25</td>
<td>$12,500</td>
</tr>
<tr>
<td>Curb ramps</td>
<td>EA</td>
<td>$3,500</td>
<td>1</td>
<td>$3,500</td>
</tr>
<tr>
<td>Pavement connecting to sidewalk</td>
<td>SF</td>
<td>$20</td>
<td>75</td>
<td>$1,500</td>
</tr>
<tr>
<td>Curb extension (bulbs-out) with curb ramps</td>
<td>EA (per corner)</td>
<td>$15,000</td>
<td>67</td>
<td>$1,005,000</td>
</tr>
<tr>
<td>Large curb extension with curb ramps</td>
<td>EA (per corner)</td>
<td>$20,000</td>
<td>1</td>
<td>$20,000</td>
</tr>
</tbody>
</table>

**TOTAL COST** $1,057,746
THIS PAGE IS LEFT INTENTIONALLY BLANK.
CITY HONORS COLLEGE PREPARATORY ACADEMY (CHCPA) & CROZIER MIDDLE SCHOOL

120 W. REGENT ST.

SRTS WORKSHOP

CHCPA

A SRTS workshop was conducted on September 8, 2016. The following key stakeholders attended:

• Teacher
• Students
• Representative from the City Planning Department

CROZIER MIDDLE SCHOOL

A SRTS workshop was conducted on September 23, 2016. The following key stakeholders attended:

• Parents
• Inglewood Police Department
• Representative from the City Planning Department

ISSUES RAISED AT THE SRTS WORKSHOP

CHCPA

GENERAL
• Broken sidewalks
• Lack of street trees/shade
• Speeding

CROZIER MIDDLE SCHOOL

GENERAL
• Double parking
• Motorists do not yield to pedestrian crossing
• Narrow and broken sidewalks
• Lack of street sweeping
• Speeding
ISSUES RAISED AT THE SRTS WORKSHOP (CONT.)

CHCPA + CROZIER MIDDLE SCHOOL

LOCATION-SPECIFIC CONCERNS ADDRESSED IN THIS PLAN

- **E1.** W. Regent St. & N. Fir Ave.
  - Broken sidewalks
  - Intersection needs improvement
  - Narrow sidewalk where sidewalk jogs on the east side of N. Fir Ave.

- **E2.** W. Queen St. & N. Fir Ave.
  - Broken sidewalks
  - No tactile warning curb ramp on the northeast corner

- **E3.** N. Grevillea Ave. & W. Regent St.
  - Intersection needs improvement

- **E4.** N. Grevillea Ave. midblock between W. Regent St. to W. Queen St.
  - Speeding
  - Wide street
  - No street trees
  - Lacks shade

- **E5.** N. Grevillea Ave. & W. Queen St.
  - Dangerous turning curve from W. Queen St. onto S. Grevillea Ave.

- **E6.** E. Regent St. Midblock Crossing between N. Grevillea Ave. & N. La Brea Ave.
  - Pedestrian-activated rapid-flash beacon push button does not work

CHCPA

OTHER RECORDED CONCERNS

- N. Fir Ave. from W. Regent St. to W. Queen Ave.
  - Broken sidewalks
  - Exposed underground pipe on the east side of N. Fir Ave.

- W. Queen St. from N. Fir Ave. to W. Regent St.
  - Speeding
  - Wide street
  - No street trees
  - Lacks shade

CROZIER MIDDLE SCHOOL

OTHER RECORDED CONCERNS

- Manchester Blvd. & S. Grevillea St.
  - Congested
  - Crossing needs improvement
  - Northbound left-turn signal timing conflicts with pedestrians crossing
  - Not enough time on walk cycle of the traffic signals

- W. Lime St. & S. Grevillea St.
  - Motorists do not yield to pedestrians crossing

- N. Fir Ave. from W. Regent St. to W. Queen St.
  - Speeding
  - Narrow and broken sidewalks
  - Lack of street sweeping

- W. Queen St. from N. Fir Ave. to S. Grevillea Ave.
  - Speeding

SAME AS I3.

SAME AS I5.
CITY HONORS COLLEGE PREPARATORY ACADEMY (CHCPA) & CROZIER MIDDLE SCHOOL CRASH MAP

Bicyclist and pedestrian involved crashes for a five-year period between 2009 and 2013.

CHAPTER 9

City of Inglewood Active Transportation & Safe Routes to School Master Plan
CITY HONORS COLLEGE PREPARATORY ACADEMY (CHCPA) COMMON ROUTES TO SCHOOL MAP

Proposed engineering projects along common routes used by students to get to school.
Proposed engineering projects along common routes used by students to get to school.
**E1. W. REGENT ST. & FIR AVE.**

**EXISTING**
- Signalized intersection
- Yellow transverse-line crosswalks on all legs
- Countdown signals on all legs
- Permissive left-turn signal phasing on all legs
- On-street parking on the north leg, west leg, and west side of the south leg

**PROPOSED**
- Add yellow continental crosswalks to all legs (4)
- Add advance stop lines to all legs (4)
- Add curb extensions to the north leg (2), west leg (2), and west side of the south leg (1) (5 total)
- Evaluate adding automatic recall to the pedestrian countdown signals (8)
E2. W. QUEEN ST. & N. FIR AVE.

EXISTING
- 4-way stop
- Yellow transverse-line crosswalks on all legs
- On-street parking on the west leg, south leg, south side of the east leg, and west side of the north leg

PROPOSED
- Add yellow continental crosswalks to all legs (4)
- Add advance stop lines to all legs (4)
- Add curb extensions to the north leg, south leg, and south side of the east leg (5)
- Add large curb extensions to the west leg to align with on-street angled parking (2)
- Truncate median on east leg to accommodate crosswalk

AMERICANS WITH DISABILITIES ACT (ADA)
MISSING INVENTORY FROM FIELD AUDIT
- MISSING TACTILE WARNING DEVICES ON THE NORTHEAST CORNER
E3. N. GREVILLEA AVE. & W. REGENT ST.

EXISTING
- T-intersection
- 3-way stop
- Yellow ladder crosswalk on the west leg
- Yellow transverse-line textured crosswalk on the south leg
- SLOW SCHOOL XING pavement marking on the eastbound approach of the east leg crosswalk

PROPOSED
- Add a yellow continental crosswalk to the south leg (1)
- Add an advance stop line to the south leg (1)
- Reduce the curb return to the southwest corner (1)
E4. N. GREVILLEA AVE. MIDBLOCK BETWEEN W. REGEN ST. TO W. QUEEN ST.

EXISTING
- T-intersection
- 3-way stop
- No marked crosswalks

PROPOSED
- Add a yellow continental crosswalk to the north leg (1)
- Add an advance stop line to the north leg (1)
- Add curb ramps to both sides of the north leg crosswalk (2)
E5. N. GREVILLEA AVE. & W. QUEEN ST.

EXISTING
- Uncontrolled intersection
- Textured crosswalks on the north and west legs
- Assembly B signs on the north and west legs

PROPOSED
- Add yellow continental crosswalks to the north and west legs (2)
- Add advance yield lines to both approaches to the north and west leg crosswalks (2)
- Add Assembly D signs to both approaches to the north and west leg crosswalks (2)
- Add R1-6 or Assembly B signs to both approaches to the north and west leg crosswalks (2)

AMERICANS WITH DISABILITIES ACT (ADA)
MISSING INVENTORY FROM FIELD AUDIT
- MISSING TACTILE WARNING DEVICES ON THE NORTH AND WEST LEGS

BEFORE
E6. E. REGENT ST. MIDBLOCK CROSSING BETWEEN N. GREVILLEA AVE. & N. LA BREA AVE.

EXISTING
- Uncontrolled crossing
- Yellow ladder midblock crosswalk
- Ped XING pavement markings on both approaches of the midblock crossing
- In-pavement flashers

PROPOSED
- Add a white continental midblock crossing (1)
- Replace in-pavement flashers with user-activated Rectangular Rapid-Flash Beacons (1 set)
- Add R1-5 signs to both approaches of the midblock crosswalk (2)
- Add W11-2 signs with supplemental AHEAD signs to both approaches of the midblock crosswalk
- Add crossing islands to the midblock crosswalk (1 pair)
- Add tactile warning devices to both crossing faces to the midblock crosswalk (2)

AMERICANS WITH DISABILITIES ACT (ADA)
MISSING INVENTORY FROM FIELD AUDIT
☑️ MISSING TACTILE WARNING DEVICES ON BOTH SIDES OF THE EAST LEG CROSSWALK
BICYCLE PARKING

CHCPA/CROZIER MIDDLE SCHOOL

- Add racks for 30 bicycles as described in Appendix A: Design Toolbox. Add racks for 30 skateboards/scooters. Add more if needed.

PROGRAM PLAN

Stakeholders who attended the SRTS Workshop identified the following programs appropriate for their school site. In addition to participant-suggested programs are recommended best practices. These will be modified and supplemented as experience with the program grows.

CHCPA

EDUCATION
  - Drivers’ education at school
  - Bike skills and safety education
  - Parent driver safety programs

ENCOURAGEMENT
  - Food rewards
  - Special field trips
  - Free dress day
  - Earn community service hours
  - Walking marathons
  - Encourage students to explore their neighborhood (i.e. play pokemon-go)

ENFORCEMENT
  - More police presence around surrounding neighborhood parks (Ashwood Park, Rogers Park, & Centinela Park)

CROZIER MIDDLE SCHOOL

EDUCATION
  - Health benefits education
  - Proper drop-off plan/procedures
  - Pedestrian and bicycle safety classes (PBIS Workshop)
  - Pamphlets for parents
  - Safety message on marquis
  - Student assemblies
  - “Be aware, be safe” messaging

ENCOURAGEMENT
  - Classroom competition
  - Competition among schools
  - City-wide event
  - Park-and-walk program
  - Allow parking during drop-off

ENFORCEMENT
  - Crossing guards
  - Ticketing
  - Student graffiti monitors
  - Drop-off valets

COST ESTIMATES

<table>
<thead>
<tr>
<th>ITEM DESCRIPTION</th>
<th>UNIT</th>
<th>UNIT PRICE</th>
<th>NUMBER</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continental crosswalks</td>
<td>Per lane</td>
<td>$150</td>
<td>32</td>
<td>$4,800</td>
</tr>
<tr>
<td>Advance stop lines</td>
<td>Per lane</td>
<td>$120</td>
<td>15</td>
<td>$1,800</td>
</tr>
<tr>
<td>Advance yield lines (sharks teeth)</td>
<td>Per lane</td>
<td>$96</td>
<td>2</td>
<td>$192</td>
</tr>
<tr>
<td>Signs</td>
<td>EA</td>
<td>$500</td>
<td>8</td>
<td>$4,000</td>
</tr>
<tr>
<td>Reduced curb return and curb ramps</td>
<td>EA</td>
<td>$10,000</td>
<td>1</td>
<td>$10,000</td>
</tr>
<tr>
<td>Tactile warning devices</td>
<td>EA</td>
<td>$500</td>
<td>2</td>
<td>$1,000</td>
</tr>
<tr>
<td>Curb ramps</td>
<td>EA</td>
<td>$3,500</td>
<td>2</td>
<td>$7,000</td>
</tr>
<tr>
<td>Truncate median</td>
<td>EA</td>
<td>$500</td>
<td>1</td>
<td>$500</td>
</tr>
<tr>
<td>Curb extension (bulbs-out) with curb ramps</td>
<td>EA (per corner)</td>
<td>$15,000</td>
<td>10</td>
<td>$150,000</td>
</tr>
<tr>
<td>Large curb extension with curb ramps</td>
<td>EA (per corner)</td>
<td>$20,000</td>
<td>2</td>
<td>$40,000</td>
</tr>
<tr>
<td>Pedestrian crossing islands</td>
<td>EA</td>
<td>$7,500</td>
<td>1</td>
<td>$7,500</td>
</tr>
<tr>
<td>Rectangular rapid-flash beacons</td>
<td>Per set</td>
<td>$25,000</td>
<td>1</td>
<td>$25,000</td>
</tr>
</tbody>
</table>

TOTAL COST $251,792
A SRTS workshop was conducted on September 2, 2016. The following key stakeholders attended:

- Parents
- Representative from the City Planning Department
ISSUES RAISED AT THE SRTS WORKSHOP

GENERAL
- Need designated bus loading XING
- Double parking
- Heavy congestion around school
- Driveways blocked

LOCATION-SPECIFIC CONCERNS ADDRESSED IN THIS PLAN
- **F1.** W. Olive St. & S. Inglewood Ave.
  - Congestion
  - Lack of crossing guard
- **F2.** E. Manchester Blvd. & S. Eucalyptus Ave.
  - Not enough time on “walk cycle” on the traffic signals
- **F3.** S. Eucalyptus Ave. & W. Olive St.
  - Crossing needs improvement
- **F4.** S. Eucalyptus Ave. & W. Kelso St.
  - Broken sidewalks from overgrown tree roots
- **F5.** S. Eucalyptus St. & W. Lime St.
  - 2-way stop for motorists on W. Lime St. – may benefit from a 4-way stop
- **F6.** W. Lime St. & S. Fir Ave.
  - Crossing needs improvement

OTHER RECORDED CONCERNS
- **E. Kelso St.** from S. Eucalyptus Ave. to S. Grevillea Ave.
  - Parked cars blocking sidewalks
- **E. Manchester Blvd. & S. Oak St.**
  - Congestion from the freeway off-ramp on E. Manchester Blvd.
Bicyclist and pedestrian involved crashes for a five-year period between 2009 and 2013.
CLAUDE HUDNALL ELEMENTARY SCHOOL COMMON ROUTES TO SCHOOL MAP

Proposed engineering projects along common routes used by students to get to school.
F1. W. OLIVE ST. & S. INGLEWOOD AVE.

EXISTING
- 4-way stop
- Yellow transverse-line crosswalks on the north, east and south legs
- SLOW SCHOOL XING pavement marking on southbound approach of the north leg crosswalk
- On-street parking on all legs

PROPOSED
- Add white continental crosswalks to all legs (4)
- Add advance stop line to all legs (4)
- Add curb extensions to all legs (8)
F2. W. MANCHESTER BLVD. & S. EUCALYPTUS AVE.

EXISTING
- Signalized intersection
- Yellow transverse-line crosswalks on all legs
- Countdown signals on all legs
- Automatic recall to the pedestrian signals on the north and south legs
- Permissive left-turn signal phasing on all legs
- On-street parking on the north leg, south leg, south side of the west leg, and north side of the east leg

PROPOSED
- Add white continental crosswalks to all legs (4)
- Add advance stop lines to all legs (4)

AMERICANS WITH DISABILITIES ACT (ADA)
MISSING INVENTORY FROM FIELD AUDIT

- FIRE HYDRANT BLOCKING THE CURB RAMP ON THE NORTHWEST CORNER
- BUS STOPS ON THE SOUTH SIDE OF THE WEST LEG AND NORTH SIDE OF THE EAST LEG DO NOT HAVE AN ACCESSIBLE 5’ X 8’ CLEARANCE
F3. S. EUCALYPTUS AVE. & W. OLIVE ST.

EXISTING
- 4-way stop
- Yellow transverse-line crosswalks on the north and south legs
- Old Assembly B signs on the north and south legs
- On-street parking on all legs

PROPOSED
- Add white continental crosswalks to all legs (4)
- Add advance stop lines to all legs (4)
- Add curb extensions to all legs (8)
F4. S. EUCALYPTUS AVE. & W. KELSO ST.

EXISTING
- 4-way stop
- No marked crosswalks
- On-street parking on all legs

PROPOSED
- Add white continental crosswalks to all legs (4)
- Add advance stop lines to all legs (4)
- Add curb extensions to all legs (8)
F5. S. EUCLYPTUS AVE. & LIME ST.

EXISTING
- 2-way stop for Lime St.
- No marked crosswalks
- On-street parking on all legs

PROPOSED
- Add white continental crosswalks to all legs (4)
- Add advance stop lines to the east and west legs (2)
- Add advance yield lines to both approaches to the north and south leg crosswalks (2)
- Add Assembly B signs to the north and south leg crosswalks (2)
- Add Assembly D signs to both approaches to the north and south leg crosswalks (2)
- Add curb extensions to all legs (8)
F6. W. LIME ST. & S. FIR AVE.

EXISTING
- 2-way stop for Lime St.
- No marked crosswalks
- On-street parking on all legs

PROPOSED
- Add white continental crosswalks to all legs (4)
- Add advance stop lines to the east and west legs (2)
- Add advance yield lines to both approaches to the north and south leg crosswalks (2)
- Add Assembly B signs to the north and south leg crosswalks (2)
- Add Assembly D signs to both approaches to the north and south leg crosswalks (2)
- Add curb extensions to all legs (8)
BICYCLE PARKING

- Add racks for 10 bicycles as described in Appendix A: Design Toolbox. Add racks for 10 skateboards/scooters. Add more if needed.

PROGRAM PLAN

Stakeholders who attended the SRTS Workshop identified the following programs appropriate for their school site. In addition to participant-suggested programs are recommended best practices. These will be modified and supplemented as experience with the program grows.

EDUCATION
- Pedestrian safety classes for parents and students

ENCOURAGEMENT
- Punch card
- Trophy
- Walk to school day
- Walking club

ENFORCEMENT
- No enforcement programs were raised during the workshop

COST ESTIMATES

<table>
<thead>
<tr>
<th>ITEM DESCRIPTION</th>
<th>UNIT</th>
<th>UNIT PRICE</th>
<th>NUMBER</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continental crosswalks</td>
<td>Per lane</td>
<td>$150</td>
<td>54</td>
<td>$8,100</td>
</tr>
<tr>
<td>Advance stop lines</td>
<td>Per lane</td>
<td>$120</td>
<td>24</td>
<td>$2,880</td>
</tr>
<tr>
<td>Advance yield lines (sharks teeth)</td>
<td>Per lane</td>
<td>$96</td>
<td>4</td>
<td>$384</td>
</tr>
<tr>
<td>Signs</td>
<td>EA</td>
<td>$500</td>
<td>8</td>
<td>$4,000</td>
</tr>
<tr>
<td>Curb extension (bulbs-out) with curb ramps</td>
<td>EA (per corner)</td>
<td>$15,000</td>
<td>40</td>
<td>$600,000</td>
</tr>
</tbody>
</table>

TOTAL COST $615,364
A SRTS workshop was conducted on October 4, 2016. The following key stakeholders attended:

- Parents
- Grandparents
- Principal
- Representative from the City Planning Department
ISSUES RAISED AT THE SRTS WORKSHOP

GENERAL
- Crossing improvements needed
- Speeding

LOCATION-SPECIFIC CONCERNS ADDRESSED IN THIS PLAN

The following locations were identified in the workshop where crossings needed improvement:

- **G1.** Centinela Ave. & S. La Tijera Blvd.
- **G2.** S. La Cienega Blvd. & W. Fairview Bl.
- **G3.** Centinela Ave. & S. La Cienega Blvd.
- **G4.** S. La Tijera Blvd. & W. Fairview Blvd.
- **G5.** W. Beach St. & Centinela Ave.

OTHER RECORDED CONCERNS

- **La Cienega Blvd. & W. 64th St.**
  - Footbridge used by students to cross La Cienega Blvd.
  - Lack of crossing guard
  - Lack of stop sign
  - Speeding

- **W. 64th St. & N. Beach St.**
  - Preferred route to direct students to cross La Cienega bridge

SAME AS J1.
SAME AS J2.
SAME AS J3.
SAME AS J8.
The following map displays bicyclist and pedestrian involved crashes for a five-year period between 2009 and 2013.
The map below shows the proposed engineering projects along common routes used by students to get to school.
G1. LA CIENEGA BLVD. & W. FAIRVIEW BLVD.  SAME AS J1.

THE WESTERN HALF OF THIS INTERSECTION IS IN THE CITY OF LOS ANGELES AND WOULD REQUIRE COOPERATION WITH THE CITY.

EXISTING
- Signalized intersection
- Yellow continental crosswalk on the north, east, and west legs
- Advance stop line on the north, east and west legs
- Countdown signal for all directions of travel on the north, east and west legs
- Protected left-turn signal phasing for eastbound travel (SB)
- Median extends into the crosswalk on the north leg

PROPOSED
- Truncate the median on the north leg (1)
- Add a median nose to the north leg (1)

EXISTING
- Signalized intersection
- White transverse-line crosswalk on all legs
- Countdown signal for all directions of travel on all legs
- Protected left-turn signal phasing for westbound and eastbound travel (NB/SB)
- Permissive left-turn signal phasing for northbound travel (EB)
- Protected-permissive signal phasing for southbound travel (WB)
- The median on the north leg extends into the crosswalk

PROPOSED
- Add a white continental crosswalk to all legs (4)
- Add an advance stop line to all legs (4)
- Add a median nose to the north leg (1)
- Truncate the median on the north leg (1)

EXISTING
• 2-way stop for S. La Tijera Blvd.
• Yellow continental crosswalk on the north, east and south legs
• Assembly B sign on the east leg crosswalk
• Assembly D sign on the westbound approach of the east leg
• Assembly C sign on W. Fairview westbound (in advance of Assembly D)
• SLOW SCHOOL XING pavement marking on the eastbound approach of the east leg
• Curb extension on the southwest corner
• On-street parking on the east leg and west side of the south leg

PROPOSED
• Add an advance stop line to the north and south legs (2)
• Add an advance yield line to the east leg (1)
• Add an Assembly D sign on the eastbound approach of the west leg crosswalk (1)
• Add curb extensions to the east leg (2)
• Add a SLOW SCHOOL XING pavement marking on the westbound approach of the east leg (1)
• Add pavement on the east side of the north leg to create an accessible 5’ x 8’ clearance for bus stop (1)
G4. W. FAIRVIEW BLVD. & W. BEACH AVE.

EXISTING
- 4-way stop
- Yellow transverse-line crosswalk on all legs
- Advance stop line on all legs
- On-street parking on all legs

PROPOSED
- Add a white continental crosswalk to all legs (4)
- Add curb extensions to all legs (8)

EXISTING
- Signalized intersection
- White transverse-line crosswalks on all legs
- Permissive left-turn signal phasing on all legs
- On-street parking on the north, east and west legs
- Bus stops on the south side of the west leg, north side of the east leg, and west side of the south leg

PROPOSED
- Add a white continental crosswalk to all legs (4)
- Add an advance stop line to all legs (4)
BICYCLE PARKING

- Add racks for 20 bicycles as described in Appendix A: Design Toolbox. Add racks for 20 skateboards/scooters. Add more if needed.

PROGRAM PLAN

Stakeholders who attended the SRTS Workshop identified the following programs appropriate for their school site. In addition to participant-suggested programs are recommended best practices. These will be modified and supplemented as experience with the program grows.

EDUCATION

- PTA meetings
- Email messages
- Safety messages on website
- Bicycle safety classes
- Pedestrian safety classes
- Older student mentors

ENCOURAGEMENT

- International Walk to School Day
- Prize incentives (i.e. free boot camp class, helmet/safety equipment giveaway)
- Walking school bus
- Walking Wednesday – tie with running Wednesday club
- Park-and-walk program

ENFORCEMENT

- Better/clearer signs for loading zones
- Pedestrian safety signs
- Safety vests for parent volunteers
- Handheld stop signs
- Direct parents/students to crosswalk
- Better barriers for valet system

COST ESTIMATES

<table>
<thead>
<tr>
<th>ITEM DESCRIPTION</th>
<th>UNIT</th>
<th>UNIT PRICE</th>
<th>NUMBER</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continental crosswalks</td>
<td>Per lane</td>
<td>$150</td>
<td>57</td>
<td>$8,550</td>
</tr>
<tr>
<td>Advance stop lines</td>
<td>Per lane</td>
<td>$120</td>
<td>31</td>
<td>$3,720</td>
</tr>
<tr>
<td>Advance yield lines (sharks teeth)</td>
<td>Per lane</td>
<td>$96</td>
<td>1</td>
<td>$96</td>
</tr>
<tr>
<td>Signs</td>
<td>EA</td>
<td>$500</td>
<td>2</td>
<td>$1,000</td>
</tr>
<tr>
<td>Median noses</td>
<td>SF</td>
<td>$20</td>
<td>36</td>
<td>$720</td>
</tr>
<tr>
<td>Truncate median</td>
<td>EA</td>
<td>$500</td>
<td>2</td>
<td>$1,000</td>
</tr>
<tr>
<td>Curb extension (bulbs-out) with curb ramps</td>
<td>EA (per corner)</td>
<td>$15,000</td>
<td>10</td>
<td>$150,000</td>
</tr>
<tr>
<td>Pavement for bus stop</td>
<td>SF</td>
<td>$20</td>
<td>40</td>
<td>$800</td>
</tr>
</tbody>
</table>

**TOTAL COST** $165,886
H. HIGHLAND ELEMENTARY SCHOOL
430 VENICE WAY

SRTS WORKSHOP

A SRTS workshop was conducted on September 22, 2016. The following key stakeholders attended:

- Parents
- Grandparents
- Students
- Representative from the City Planning Department

ISSUES RAISED AT THE SRTS WORKSHOP

GENERAL
- Lack of visible crosswalks around school – crosswalks need repainting
- Midblock crossing
- Double parking
- Lack of school signs
- Lack of speed limit signs
- More police presence needed around schools to monitor safe driving (motorists using cell phones while driving)
- Designate drop-off/pick-up area around school
### LOCATION-SPECIFIC CONCERNS ADDRESSED IN THIS PLAN

1. **H1. W. Venice Way & W. Beach Ave.**
   - Lack of school signs
   - Loiterers hanging around the intersection

2. **H2. W. Venice Way & W. Acacia St.**
   - Crossing guard present

3. **H3. N. Inglewood Ave. & W. Plymouth St.**
   - Crossing needs improvement

4. **H4. N. Inglewood Ave. & W. Venice Way**
   - Crossing needs improvement

5. **H5. N. Inglewood Ave. & W. Hyde Park Bl.**
   - Crossing needs improvement

6. **H6. N. Eucalyptus Ave. & E. Hyde Park Blvd.**
   - People disobeying crossing guards
   - Crossing needs improvement

7. **H7. E. Hyde Park Blvd./ W. Juniper St. & N. La Brea Ave.**
   - Motorists do not stop at intersection
   - Crossing needs improvement

### OTHER RECORDED CONCERNS

- **N. Eucalyptus Ave. & Railroad Crossing**
  - Crossing needs improvement

- **Rogers Park**
  - “Stranger danger”
  - Loiterers at the park
  - Sidewalk pavements are uneven

- **N. Eucalyptus Ave. & W. Beach Ave.**
  - Lack of school signs

- **W. Beach Ave. from W. Hyde Park Blvd. to E. Hazel St.**
  - Speeding

- **E. Hyde Park Blvd. from N. Inglewood Ave. to N. Edgewood St.**
  - Speeding

- **W. Venice Way from W. Acacia St. to N. Inglewood Ave.**
  - Triple parking during school drop-off and pick-up times

- **N. Inglewood Ave. & Centinela Ave.**
  - Lack of crossing guard
  - Congestion
  - Lack of street sweeping

- **N. Inglewood Ave. (in front of school)**
  - Double parking
The map below shows the proposed engineering projects along common routes used by students to get to school.
H1. VENICE WAY & W. BEACH AVE.  
(BEACH AVE. NORTHWEST/SOUTHEAST; VENICE WAY NORTHEAST/SOUTHWEST)

EXISTING
- 4-way stop
- Yellow transverse-line crosswalk for all legs
- On-street parking on all legs
- Bus stop on the eastside of the south leg

PROPOSED
- Add a yellow continental crosswalk to all legs (4)
- Add an advance stop line to all legs (4)
- Add curb extensions to the northwest, northeast, and southwest legs, and the southwest side of the southeast leg (7)
H2. VENICE WAY & N. ACACIA ST.
(ACACIA ST. NORTH/SOUTH; VENICE WAY EAST/WEST)

EXISTING
- 3-way stop
- Yellow transverse-line crosswalks for the north and west legs
- Assembly D on the southbound approach of the north leg
- SLOW SCHOOL XING pavement marking on both approaches of the west leg crosswalk
- On-street parking on all legs

PROPOSED
- Add a yellow continental crosswalk to the north leg (1)
- Add a yellow crosswalk to the west leg (1)
- Add an advance stop line to the north and west legs (2)
- Add curb extensions to the north and west legs (4)
H3. N. INGLEWOOD AVE. & W. PLYMOUTH ST.

EXISTING
- 4-way stop
- On-street parking on all legs

PROPOSED
- Add a white continental crosswalk to all legs (4)
- Add an advance stop line to all legs (4)
- Add curb extensions to all legs (8)
H4. N. INGLEWOOD AVE. & VENICE WAY

EXISTING
- T-intersection
- 3-way stop
- Yellow transverse-line crosswalk for the west leg
- Assembly D signs on the southbound approach of the north leg and the northbound approach of the south leg
- Curb extension on the south side of the west leg
- On-street parking on all legs

PROPOSED
- Add a yellow continental crosswalk to the north and west legs (2)
- Add an advance stop line to the north and west legs (2)
- Add curb extensions to the north leg and the north side of the west leg (3)
- Add pavement to the east side of the north leg crosswalk
- Add a tactile warning device on the northwest and southwest corners (2)

AMERICANS WITH DISABILITIES ACT (ADA)
MISSING INVENTORY FROM FIELD AUDIT
- □ MISSING TACTILE WARNING DEVICES ON THE NORTHWEST AND SOUTHWEST CORNERS
**H5. N. INGLEWOOD AVE. & W. HYDE PARK BLVD.**

**EXISTING**
- 4-way stop
- On-street parking on all legs

**PROPOSED**
- Add a white continental crosswalk to all legs (4)
- Add an advance stop line to all legs (4)
- Add curb extensions to all legs (8)

**AMERICANS WITH DISABILITIES ACT (ADA)**
**MISSING INVENTORY FROM FIELD AUDIT**

☐ **MISSING TACTILE WARNING DEVICES** ON THE SOUTHWEST AND SOUTHEAST CORNERS
H6. N. EUCALYPTUS AVE. & E. HYDE PARK BLVD.

EXISTING
• 4-way stop
• On-street parking on the north, east, and west legs

PROPOSED
• Add a white continental crosswalk to all legs (4)
• Add an advance stop line to all legs (4)
• Add curb extensions to the west and east legs (4)
H7. E. HYDE PARK BLVD./ W. JUNIPER ST. & N. LA BREA AVE.

EXISTING
- Signalized intersection
- Countdown signals for all legs
- Protected left-turn signal phasing for eastbound and westbound travel (NB/SB)
- On-street parking on the north side of the east leg
- Bus stops on the east side of the north leg and the west side of the south leg

PROPOSED
- Add a white continental crosswalk to all legs (4)
- Add an advance stop line to all legs (5)
- Extend the median and add a median nose to the west leg (1)
- Add pedestrian signals to the west leg crosswalk (2)
- Add a tactile warning device on the northwest and southeast corner

AMERICANS WITH DISABILITIES ACT (ADA) MISSING INVENTORY FROM FIELD AUDIT
- MISSING TACTILE WARNING DEVICES ON ALL CORNERS
**BICYCLE PARKING**

- Add racks for 10 bicycles as described in *Appendix A: Design Toolbox*. Add racks for 10 skateboards/scooters. Add more if needed.

**PROGRAM PLAN**

Stakeholders who attended the SRTS Workshop identified the following programs appropriate for their school site. In addition to participant-suggested programs are recommended best practices. These will be modified and supplemented as experience with the program grows.

**EDUCATION**

- Pedestrian safety education
- Bicycle safety/helmet safety fitting
- Handouts/messaging/mailers for parents

**ENCOURAGEMENT**

- Golden Sneaker Award
- Free Health Food
- School-wide contests
- Stickers, coloring books, bracelets
- Free/discounted goods/donations from local businesses

**ENFORCEMENT**

- Re-evaluate pick-up/drop-off procedures
- Ticketing doubled in school zone
- Police enforcement for traffic

---

### COST ESTIMATES

<table>
<thead>
<tr>
<th>ITEM DESCRIPTION</th>
<th>UNIT</th>
<th>UNIT PRICE</th>
<th>NUMBER</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continental crosswalks</td>
<td>Per lane</td>
<td>$150</td>
<td>58</td>
<td>$8,700</td>
</tr>
<tr>
<td>Advance stop lines</td>
<td>Per lane</td>
<td>$120</td>
<td>29</td>
<td>$3,480</td>
</tr>
<tr>
<td>Tactile warning devices</td>
<td>EA</td>
<td>$500</td>
<td>4</td>
<td>$2,000</td>
</tr>
<tr>
<td>Curb extension (bulbs-out) with curb ramps</td>
<td>EA (per corner)</td>
<td>$15,000</td>
<td>34</td>
<td>$510,000</td>
</tr>
<tr>
<td>Pavement connecting to sidewalk</td>
<td>SF</td>
<td>$20</td>
<td>25</td>
<td>$500</td>
</tr>
<tr>
<td>Countdown signals</td>
<td>EA</td>
<td>$300</td>
<td>3</td>
<td>$900</td>
</tr>
</tbody>
</table>

**TOTAL COST** $525,580
A SRTS workshop was conducted on September 22, 2016. The following key stakeholders attended:

- Students
- Inglewood Union School District Representative
- Inglewood Police Department
- Representative from the City Planning Department
ISSUES RAISED AT THE SRTS WORKSHOP

GENERAL
- Speeding
- Crossing improvements needed
- Street lighting
- Lack of signs

LOCATION-SPECIFIC CONCERNS ADDRESSED IN THIS PLAN
- **1.** E. Manchester Blvd. & S. Cedar Ave.
  - Motorists not yielding to pedestrians crossing
- **2.** E. Florence Ave. & N. Eucalyptus Ave.
  - Lack of sidewalks
- **3.** E. Manchester Blvd. & S. Grevillea St.
  - Look at signal timing
- **4.** E. Nutwood St. & S. Grevillea St.
  - Crossing needs improvement
- **5.** Lime St. & S. Grevillea St.
  - Crossing needs improvement

OTHER RECORDED CONCERNS
- **E. Manchester Blvd. & S. Inglewood Ave.**
  - Lack of streetlights
- **W. Lime St. & S. Fir Ave.**
  - Lack of stop signs
- **E. Arbor Vitae St. & S. Eucalyptus Ave.**
  - Crossing needs improvement
- **Rogers Park**
  - Lack of street lighting
- **E. Manchester Blvd. & N. La Brea Ave.**
  - Speeding
INGLEWOOD HIGH SCHOOL CRASH MAP

Bicyclist and pedestrian involved crashes for a five-year period between 2009 and 2013.
Proposed engineering projects along common routes used by students to get to school.
I1. W. MANCHESTER BLVD. & S. CEDAR AVE.

EXISTING

- White ladder crosswalk on the east leg (not shown in aerial map)
- Advance yield lines on both approaches of the east leg crosswalk
- W11-2 and W16-7p pedestrian crossing sign on the east leg crosswalk
- W11-2 pedestrian crossing sign on both approaches of the east leg crosswalk (missing W16-9p pedestrian crossing “ahead” sign)

PROPOSED

- Add white continental crosswalks to the north and south legs (2)
- Add advance stop lines to the north and south legs (2)
- Add R1-5 signs to both approaches to the east leg crosswalk (2)
- Add a pedestrian hybrid beacon
- Replace the westbound left-turn lane with crossing islands (1 pair)
- Fill in the former east leg left turn lane with painted median
I2. W. FLORENCE AVE. & N. EUCALYPTUS AVE.

EXISTING
- Signalized intersection
- Red textured crosswalks on all legs
- Countdown signals on all legs
- Automatic recall to the pedestrian signals on the north and south legs
- Permissive left-turn signal phasing on all legs (City may already be installing protected left-turn signal phasing on all legs)

PROPOSED
- Add white continental crosswalks to all legs (4)
- Add advance stop lines to all legs (4)

AMERICANS WITH DISABILITIES ACT (ADA)
MISSING INVENTORY FROM FIELD AUDIT
- MISSING TACTILE WARNING DEVICES ON ALL CORNERS
- MOVE TRASH CAN ON THE EAST SIDE OF THE NORTH LEG SO THAT BUS STOP HAS AN ACCESSIBLE 5" X 8" CLEARANCE
**I3. W. MANCHESTER BLVD. & S. GREVILLEA AVE.**

**EXISTING**
- Signalized T-intersection
- Yellow transverse-line crosswalks on the east, south and west legs
- Countdown signals on the east, south and west legs
- Automatic recall to the pedestrian signals on the east, south and west legs
- Permissive left-turn signal phasing on the east, south and west legs
- On-street parking on the south leg, south side of the east leg, and south side of the west leg

**PROPOSED**
- Add yellow continental crosswalks to the east, south and west legs (3)
- Add advance stop lines to the east, south and west legs (3)
- Add crossing islands to the west leg (1 pair)
- Reduce the curb return on the southeast corner (1)
- Add curb extensions to the south side of the west leg (1) and the west side of the south leg (1)
- Add a bus bulb on the south side of the east leg (1)
- Add tactile warning devices to the north side of the east and west legs (2)
I4. S. GREVILLEA AVE. & E. NUTWOOD ST.

EXISTING
- Signalized T-intersection
- Yellow transverse-line crosswalks on the north, east and south legs
- Countdown signals on the north, east and south legs
- Permissive left-turn signal phasing on the north, east and south legs
- On-street parking on the north and east legs

PROPOSED
- Add yellow continental crosswalks to the north, east and south legs (3)
- Add advance stop lines to the north, east and south legs (3)
- Reduce the curb return on the northeast corner (1)
- Add curb extensions to the west side of the north leg and east side of the south leg (2)
- Add large curb extensions to the east leg to align with the on-street angled parking (2)
15. S. GREVILLEA AVE. & LIME ST.

EXISTING
- T-intersection
- 3-way stop
- Yellow transverse-line crosswalk on the north leg
- On-street parking on the north, south and west legs
- SLOW SCHOOL XING pavement markings on both approaches to the north leg crosswalk (needs to be repainted)

PROPOSED
- Add white continental crosswalks to the north, south and west legs (3)
- Add advance stop lines to the north, south and west legs (3)
- Add curb extensions to the north, south and west legs (6)
- Add LED-flashing lights to the stop signs to the north and south legs (2)
BICYCLE PARKING

- Add racks for 30 bicycles as described in the Design Toolbox section. Add racks for 30 skateboards/scooters. Add more if needed.

PROGRAM PLAN

Stakeholders who attended the SRTS Workshop identified the following programs appropriate for their school site. In addition to participant-suggested programs are recommended best practices. These will be modified and supplemented as experience with the program grows.

EDUCATION

- No education programs were raised during the workshop

ENCOURAGEMENT

- Cash prizes
- Gift cards
- Bike raffles
- Food
- Movie tickets
- School credit
- Disneyland tickets
- Meet a role model

ENFORCEMENT

- No enforcement programs were raised during the workshop

COST ESTIMATES

<table>
<thead>
<tr>
<th>ITEM DESCRIPTION</th>
<th>UNIT</th>
<th>UNIT PRICE</th>
<th>NUMBER</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continental crosswalks</td>
<td>Per lane</td>
<td>$150</td>
<td>25</td>
<td>$3,750</td>
</tr>
<tr>
<td>Advance stop lines</td>
<td>Per lane</td>
<td>$120</td>
<td>27</td>
<td>$3,240</td>
</tr>
<tr>
<td>Signs</td>
<td>EA</td>
<td>$500</td>
<td>2</td>
<td>$1,000</td>
</tr>
<tr>
<td>Reduced curb return and curb ramps</td>
<td>EA</td>
<td>$10,000</td>
<td>2</td>
<td>$20,000</td>
</tr>
<tr>
<td>Tactile warning devices</td>
<td>EA</td>
<td>$500</td>
<td>2</td>
<td>$1,000</td>
</tr>
<tr>
<td>Painted medians</td>
<td>EA</td>
<td>$500</td>
<td>1</td>
<td>$500</td>
</tr>
<tr>
<td>Curb extension (bulbs-out) with curb ramps</td>
<td>EA (per corner)</td>
<td>$15,000</td>
<td>10</td>
<td>$150,000</td>
</tr>
<tr>
<td>Large curb extension with curb ramps</td>
<td>EA (per corner)</td>
<td>$20,000</td>
<td>2</td>
<td>$40,000</td>
</tr>
<tr>
<td>Pedestrian crossing islands</td>
<td>EA</td>
<td>$10,000</td>
<td>2</td>
<td>$15,000</td>
</tr>
<tr>
<td>Bus bulbs</td>
<td>EA</td>
<td>$15,000</td>
<td>1</td>
<td>$15,000</td>
</tr>
<tr>
<td>Pedestrian hybrid beacons</td>
<td>EA</td>
<td>$3,000</td>
<td>2</td>
<td>$6,000</td>
</tr>
<tr>
<td>Add LED lights to stop signs with solar power</td>
<td>EA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**TOTAL COST**  $265,490
A SRTS workshop was conducted on September 14, 2016. The following key stakeholders attended:

- Parents
- Assistant Principal
- Representative from the Inglewood Unified School District
- Representatives from the CCS
- Representative from the City Planning Department
ISSUES RAISED AT THE SRTS WORKSHOP

GENERAL
- Speeding
- Lack of crosswalks
- Lack of stop signs
- Motorists not stopping at stop-controlled intersections
- Lack of signs and markings designating school zone
- Lack of enforcement around school area
- Need longer crossing times on pedestrian signals

LOCATION-SPECIFIC CONCERNS ADDRESSED IN THIS PLAN
- J1. S. La Cienega Blvd. & W. Fairview Blvd.
  - Crossing needs improvement
- J2. Centinela Ave. & S. La Cienega Blvd.
  - Wide, busy street
  - Crossing needs improvement
- J3. La Tijera Blvd. & W. Fairview Blvd.
  - Crossing needs improvement
  - Lack of stop sign
- J4. S. La Tijera Blvd. & W. 64th Pl.
  - Crossing needs improvement
- J5. S. La Tijera Blvd. & W. 64th St.
  - Congested
  - Lack of crossing guard
  - SAME AS G2.
- J6. N. Beach St. & W. 64th Pl.
  - Crossing needs improvement
- J7. N. Beach St. & W. Ellis Av.
  - Crossing needs improvement
- J8. W. Beach St. & Centinela Ave.
  - Crossing needs improvement
- J9. N. Eucalyptus Ave. & E. 64th Pl.
  - Crossing needs improvement
  - Confusing intersection

OTHER RECORDED CONCERNS
- N. Beach St. from W. Fairview Blvd. to W. Hillsdale St.
  - Congested
  - Motorists not stopping at stop-controlled intersections
The following map displays bicyclist and pedestrian involved crashes for a five-year period between 2009 and 2013.
The map below shows the proposed engineering projects along common routes used by students to get to school.

THE WESTERN HALF OF THIS INTERSECTION IS IN THE CITY OF LOS ANGELES AND WOULD REQUIRE COOPERATION WITH THE CITY.

EXISTING

• Signalized intersection
• Yellow continental crosswalk on the north, east, and west legs
• Advance stop line on the north, east and west legs
• Countdown signal for all directions of travel on the north, east and west legs
• Protected left-turn signal phasing for eastbound travel (SB)
• Median extends into the crosswalk on the north leg

PROPOSED

• Truncate the median on the north leg (1)
• Add a median nose to the north leg (1)

EXISTING
- Signalized intersection
- White transverse-line crosswalk on all legs
- Countdown signal for all directions of travel on all legs
- Protected left-turn signal phasing for westbound and eastbound travel (NB/SB)
- Permissive left-turn signal phasing for northbound travel (EB)
- Protected-permissive signal phasing for southbound travel (WB)
- Median on the north leg extends into the crosswalk

PROPOSED
- Add a white continental crosswalk to all legs (4)
- Add an advance stop line to all legs (4)
- Truncate the median on the north leg (1)

EXISTING
- 2-way stop for S. La Tijera Blvd.
- Yellow continental crosswalk on the north, east and south legs
- Assembly B sign on the east leg crosswalk
- Assembly D sign on the westbound approach of the east leg
- Assembly C sign on W. Fairview westbound (in advance of Assembly D)
- SLOW SCHOOL XING pavement marking on the eastbound approach of the east leg
- Curb extension on the southwest corner
- On-street parking on the east leg and west side of the south leg

PROPOSED
- Add an advance stop line to the north and south legs (2)
- Add an advance yield line to the east and west legs (2)
- Add curb extensions to the east leg (2)
- Add a SLOW SCHOOL XING pavement marking on the westbound approach of the east leg (1)
- Add pavement on the east side of the north leg to create an accessible 5’ x 8’ clearance for bus stop (1)

AMERICANS WITH DISABILITIES ACT (ADA)
MISSING INVENTORY FROM FIELD AUDIT

- BUS STOPS ON THE EAST AND WEST SIDES OF THE NORTH LEG DO NOT HAVE ACCESSIBLE 5’ X 8’ CLEARANCE
J4. S. LA TIJERA BLVD. (NORTH-SOUTH LEGS) & W. 64TH PL. (WEST-EAST LEGS)

EXISTING
- T-intersection
- 3-way stop
- Yellow transverse-line crosswalk on the north and east legs
- Advance stop line on the north and east legs
- On-street parking on the east leg, the east side of the north leg and the east side of the south leg

PROPOSED
- Add a yellow continental crosswalk to the east leg (1)
- Add a raised yellow continental crosswalk on the north leg (1)
- Add curb extensions to the north and east legs (2)
J5. S. LA TIJERA BLVD. & W. 64TH ST.

EXISTING
- 4-way stop
- Yellow transverse-line crosswalks on all legs
- On-street parking on all legs
- Bus stop on the east side of the south leg and the west side of the north leg

PROPOSED
- Add a yellow continental crosswalk to all legs (4)
- Add an advance stop line to all legs (4)
- Add curb extensions to the east and west legs, the east side of the north leg, and the west side of the south leg (4)

AMERICANS WITH DISABILITIES ACT (ADA)
MISSING INVENTORY FROM FIELD AUDIT
- MISSING CURB RAMP ON THE SOUTHEAST CORNER
- MISSING TACTILE WARNING DEVICES ON THE NORTHEAST, SOUTHEAST, AND SOUTHWEST CORNERS
J6. N. BEACH ST. & W. 64TH PL.

EXISTING

- 4-way stop
- Yellow transverse-line crosswalk on the east and south legs
- Old Assembly B sign on the southbound approach of the south leg - misplaced
- Assembly D sign on the northbound approach of the south leg – misplaced
- SLOW SCHOOL XING pavement marking on northbound and southbound approaches of the south leg
- On-street parking on all legs

PROPOSED

- Add a white continental crosswalk to all legs (4)
- Add an advance stop line to all legs (4)
- Add curb extensions to all legs (8)

AMERICANS WITH DISABILITIES ACT (ADA)
MISSING INVENTORY FROM FIELD AUDIT

☐ MISSING CURB RAMPS AND TACTILE WARNING DEVICES ON ALL CORNERS
J7. W. BEACH AVE. & W. ELLIS AVE.

EXISTING
- 4-way stop
- On-street parking on all legs

PROPOSED
- Add a white continental crosswalk to all legs (4)
- Add an advance stop line to all legs (4)
- Add curb extensions to all legs (8)

[Diagram showing the proposed changes]

AMERICANS WITH DISABILITIES ACT (ADA)
MISSING INVENTORY FROM FIELD AUDIT
- MISSING CURB RAMPS AND TACTILE WARNING DEVICES ON ALL CORNERS

BEFORE
J8. W. BEACH AVE. & CENTINELA AVE. **SAME AS G5.**

**EXISTING**
- Signalized intersection
- White transverse-line crosswalks on all legs
- Permissive left-turn signal phasing on all legs
- On-street parking on the north, east and west legs
- Bus stops on the south side of the west leg, north side of the east leg, and west side of the south leg

**PROPOSED**
- Add a white continental crosswalk to all legs (4)
- Add an advance stop line to all legs (4)
J9. N. EUCALYPTUS AVE. & W. 64TH PL.

EXISTING
- 4-way stop
- No marked crosswalks
- On-street parking on all legs

PROPOSED
- Add a white continental crosswalk to all legs (4)
- Add an advance stop line to all legs (4)
- Add curb extensions to all legs (8)

AMERICANS WITH DISABILITIES ACT (ADA)
MISSING INVENTORY FROM FIELD AUDIT
- MISSING CURB RAMPS ON THE NORTHWEST AND SOUTHWEST CORNERS
- MISSING TACTILE WARNING DEVICES ON THE ALL CORNERS
BICYCLE PARKING

- Add racks for 20 bicycles as described in Appendix A: Design Toolbox. Add racks for 20 skateboards/scooters. Add more if needed.

PROGRAM PLAN

Stakeholders who attended the SRTS Workshop identified the following programs appropriate for their school site. In addition to participant-suggested programs are recommended best practices. These will be modified and supplemented as experience with the program grows.

EDUCATION

- Bicycle safety classes
- Pedestrian safety program
- Education assembly for each grade

ENCOURAGEMENT

- Park-and-walk sites
- Walking school bus
- Walk to school day

ENFORCEMENT

- No enforcement programs were raised during the workshop

COST ESTIMATES

<table>
<thead>
<tr>
<th>ITEM DESCRIPTION</th>
<th>UNIT</th>
<th>UNIT PRICE</th>
<th>NUMBER</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continental crosswalks</td>
<td>Per lane</td>
<td>$150</td>
<td>84</td>
<td>$12,600</td>
</tr>
<tr>
<td>Advance stop lines</td>
<td>Per lane</td>
<td>$120</td>
<td>46</td>
<td>$5,520</td>
</tr>
<tr>
<td>Advance yield lines (sharks teeth)</td>
<td>Per lane</td>
<td>$96</td>
<td>3</td>
<td>$288</td>
</tr>
<tr>
<td>SLOW SCHOOL XING pavement markings</td>
<td>EA</td>
<td>$500</td>
<td>1</td>
<td>$500</td>
</tr>
<tr>
<td>Raised crosswalk</td>
<td>EA</td>
<td>$20,000</td>
<td>1</td>
<td>$20,000</td>
</tr>
<tr>
<td>Pavement for bus stop</td>
<td>SF</td>
<td>$20</td>
<td>40</td>
<td>$800</td>
</tr>
<tr>
<td>Extending existing median/median noses</td>
<td>SF</td>
<td>$20</td>
<td>18</td>
<td>$360</td>
</tr>
<tr>
<td>Truncate median</td>
<td>EA</td>
<td>$500</td>
<td>2</td>
<td>$1,000</td>
</tr>
<tr>
<td>Curb extension (bulbs-out) with curb ramps</td>
<td>EA (per corner)</td>
<td>$15,000</td>
<td>32</td>
<td>$480,000</td>
</tr>
</tbody>
</table>

**TOTAL COST** $521,068
K. MORNINGSIDE HIGH SCHOOL

10500 YUKON AVE.

SRTS WORKSHOP

A SRTS workshop was conducted on September 21, 2016. The following key stakeholders attended:

- Students
- Teachers
- Inglewood Police Department
ISSUES RAISED AT THE SRTS WORKSHOP

GENERAL
- Speeding
- Gang related activity
- Student safety
- Lack of lighting near school parking lot
- Police visibility/enforcement

LOCATION-SPECIFIC CONCERNS ADDRESSED IN THIS PLAN
- **K1.** W. Century Blvd. & S. Doty Ave
  - Crossing needs improvement
- **K2.** W. Century Blvd. & HP Casino Dr.
  - Crossing needs improvement
- **K3.** W. Century Blvd. & Yukon Ave. S.
  - Crossing needs improvement
- **K4.** W. 104th St. & Yukon Ave.
  - Lack of street lighting around Costco shopping area
- **K5.** Yukon Ave. S. & W. 108th St.
  - Gang activity
  - Lack of street lighting around school parking lot
- **K6.** Crenshaw Blvd. & W. 104th St.
  - Lack of stop signs
  - Crash-prone intersection

OTHER RECORDED CONCERNS
- **W. 104th St. from S. Prairie Ave. to Yukon Ave.**
  - Streets need to be repaved
  - Lots of students walking along this street
  - Speeding
- **W. 107th St. from S. Prairie Ave. to Yukon Ave.**
  - Lots of students walking along this street
  - Personal safety concerns
- **W. 108th St. from S. Lemoli Ave. to Crenshaw Blvd.**
  - Lots of students walking along this street
  - Congested
  - Yukon Ave. from W. 104th St. to W. 108th St.
  - Speeding
- **W. 108th St. & Crenshaw Blvd. (Winchell’s Donuts)**
  - Gang activity
  - Personal safety concerns
- **W. Century Blvd. from S. Prairie Ave. to Yukon Ave.**
  - Lack of enough places to cross
- **W. Century Blvd. from Crenshaw Blvd. to S. 5th Ave.**
  - Broken sidewalks
- **W. 102th St. west of Yukon Ave.**
  - Street needs to be cleaned and landscaped
Bicyclist and pedestrian involved crashes for a five-year period between 2009 and 2013.

MORNINGSIDE HIGH SCHOOL CRASH MAP
Proposed engineering projects along common routes used by students to get to school.
K1. W. CENTURY BLVD. & DOTY AVE

EXISTING
• Signalized intersection
• White transverse-line crosswalks on the north (under construction), south, east, and west legs Countdown signals on the north, south, east (not working), and west leg crosswalks
• Protected left-turn signal phasing for northbound and southbound travel (EB/WB) and eastbound travel (SB)
• Protected-permissive signal phasing for westbound travel (NB)
• On-street parking permitted on west side of south leg
• Bus stop on both sides of the west leg

PROPOSED
• Add a white continental crosswalk to all legs (4)
• Add an advance stop line to all legs (4)
K2. CENTURY BLVD. & HP CASINO DR.

EXISTING
- Signalized intersection
- T-intersection
- White transverse-line crosswalk on the west leg
- White continental crosswalk on the north leg
- Countdown signals on the north and west leg crosswalks
- Protected left-turn signal phasing for northbound travel (EB)

PROPOSED
- Add a white continental crosswalk to the east and west legs (2)
- Add an advance stop line to the north leg (private property), east and west legs (3)
- Add a median nose to the east leg (1)
- Add countdown signals to the east leg crosswalk (2)
- Add a curb ramp to east leg (1)
K3. CENTURY BLVD. & YUKON AVE. S.

EXISTING
- Signalized intersection
- White transverse-line crosswalks on all legs
- Countdown signals on the south leg (west side not operating), the north side of the east leg and the west leg crosswalks
- Protected left-turn signal phasing for northbound and southbound travel (EB/WB)
- Bus stops on the south side of the east leg and north side of the west leg
- Protected left-turn phasing for eastbound and westbound travel (NB/SB)

PROPOSED
- Add a white continental crosswalk to all legs (4)
- Add an advance stop line to all legs (4)
- Add countdown signals the north leg and south side of east leg crosswalks (3)

EXISTING
- Signalized intersection
- Yellow transverse-line crosswalks on all legs
- Assembly D sign on the eastbound approach of the east leg
- Countdown signal on east side of the south leg crosswalk
- Permissive left-turn signal phasing for all legs
- On-street parking permitted on the west side of the north and south legs, and both sides of the east and west legs

PROPOSED
- Add a yellow continental crosswalk to all legs (4)
- Add an advance stop line to all legs (4)
- Add an Assembly D sign in advance of the Assembly C signs on both approaches of the north and south leg (2)
- Add countdown signals to the north, east and west leg crosswalks and the west side of the south leg crosswalk (7)
- Add curb extensions to the north and east legs (4)
K5. YUKON AVE. S. & W. 108TH ST.

EXISTING
- Signalized intersection
- Yellow transverse-line crosswalk on all legs
- Countdown signals on the east side of the south leg and east leg crosswalks
- Permissive left-turn signal phasing for all legs
- On-street parking permitted on all legs

PROPOSED
- Add a white continental crosswalk to all legs (4)
- Add an advance stop line to all legs (4)
- Add curb extensions to the north and south legs (4)
- Add countdown signals to the north and west legs and for the westbound direction of travel on the south leg (5)

EXISTING
- Signalized intersection
- White transverse-line crosswalk on the south leg
- Protected left-turn signal phasing for westbound and eastbound travel (NB/SB)
- Permissive left-turn signal phasing for northbound and southbound travel (WB/EB)
- On-street parking permitted on the north and south legs of the frontage roads, and the east and west legs
- Bus stop on the west side of the south leg and the east side of the north leg

PROPOSED
- Add a white continental crosswalk to all legs (including the frontage roads) (4)
- Add an advance stop line to the south and north leg (main road only) (2)
- Add a median nose to the west side of south leg (frontage road) (1)
  - Align access to west side south leg bus stop with pedestrian crosswalk
- Add a median nose to the west side of the north leg (frontage road) (1)
  - Align access to west side south leg bus stop with pedestrian crosswalk
- Add curb extensions to the west leg, to the north side of the east leg, to the east side of the south leg of the eastern frontage road, to the west side of the north leg of the western frontage road, and to the west side of the western frontage road (6)
- Add countdown signals to the north and south leg crosswalks (4)

AMERICANS WITH DISABILITIES ACT (ADA)
MISSING INVENTORY FROM FIELD AUDIT
- MISSING TACTILE WARNING DEVICES ON THE SOUTHEAST CORNER OF THE EASTERN FRONTAGE ROAD AND NORTHWEST CORNER OF THE WESTERN FRONTAGE ROAD

BEFORE
PROPOSED TRAFFIC CALMING ELEMENTS

- Add speed feedback signs on Yukon Ave. between 104th St. and 107th St.
- Add speed cushions on 105th St. from Prairie Ave. to Yukon Ave. (3 sets)

BICYCLE PARKING

- Add racks for 30 bicycles as described in Appendix A: Design Toolbox. Add racks for 30 skateboards/scooters. Add more if needed.

PROGRAM PLAN

- No education, encouragement and enforcement programs were raised during the workshop.

<table>
<thead>
<tr>
<th>COST ESTIMATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEM DESCRIPTION</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>Continental crosswalks</td>
</tr>
<tr>
<td>Advance stop lines</td>
</tr>
<tr>
<td>Signs</td>
</tr>
<tr>
<td>Curb ramps</td>
</tr>
<tr>
<td>Median noses</td>
</tr>
<tr>
<td>Curb extension (bulbs-out)</td>
</tr>
<tr>
<td>Countdown signals</td>
</tr>
<tr>
<td>TOTAL COST</td>
</tr>
</tbody>
</table>
SRTS WORKSHOP

A SRTS workshop was conducted on August 31, 2016. The following key stakeholders attended:

- Parents
- Principal
- Representative from the City Planning Department
ISSUES RAISED AT THE SRTS WORKSHOP

GENERAL
- Speeding
- Broken sidewalks
- Lack of signs
- Animal waste
- Inadequate fencing on periphery of school
- Disrespecting of crossing guards

LOCATION-SPECIFIC CONCERNS ADDRESSED IN THIS PLAN
- **L1.** S. Oak St. & W. Elm Ave.
  - Speeding
  - Existing 2-way stop; consider 4-way stop
- **L2.** W. Spruce Ave. & S. Oak St.
  - Crossing needs improvement
- **L3.** S. Oak St. & W. Arbor Vitae St.
  - Not enough time on walk cycle of the traffic signals
  - Lack of visible crosswalks
  - Speeding
  - Potential park-and-walk location at church parking lot on the northeast corner

OTHER RECORDED CONCERNS
- S. Oak St. from W. Elm St. to W. Arbor Vitae St.
  - Broken sidewalks
- W. Elm St. from S. Ash Ave. to S. Oak St.
  - Narrow sidewalks
  - Dog waste problem
- S. Ash Ave. & W. Hillcrest Blvd.
  - Possible walking and biking path
  - Lots of neighborhood dumping
  - Lack of school signs designating school zone
The following map displays bicyclist and pedestrian involved crashes for a five-year period between 2009 and 2013.
OAK STREET ELEMENTARY SCHOOL COMMON ROUTES TO SCHOOL MAP
Proposed engineering projects along common routes used by students to get to school.
L1. S. ASH AVE. & W. HILLCREST BLVD.

EXISTING
- 1-way stop for S. Ash Ave.

PROPOSED
- Add a continental crosswalk on the south leg (1)
- Add traffic calming measures to slow intersection speed
- Add curb ramps on the south leg (2)

AMERICANS WITH DISABILITIES ACT (ADA)
MISSING INVENTORY FROM FIELD AUDIT
☐ MISSING CURB RAMPS AND TACTILE WARNING DEVICES ON THE SOUTH LEG
L2. S. OAK ST. & W. ELM ST.

EXISTING
- 2-way stop for W. Elm St.
- Yellow transverse-line crosswalks on all legs
- Old Assembly B signs on the north and south leg crosswalks
- SLOW SCHOOL XING pavement markings on both approaches of the north and south leg crosswalks
- On-street parking on all legs

PROPOSED
- Add yellow continental crosswalks to all legs (4)
- Add advance stop lines to the east and west legs (2)
- Add advance yield lines to both approaches of the north and south leg crosswalks (2)
- Add Assembly D signs to both approaches of the north and south leg crosswalks (2)
- Add curb extensions to all legs (8)
- Replace old Assembly B signs with new ones (2)
L3. S. OAK ST. & W. SPRUCE ST.

EXISTING
• 4-way stop
• Yellow transverse-line crosswalks on all legs
• SLOW SCHOOL XING pavement markings on the southbound approach of the north leg crosswalk
• On-street parking on all legs

PROPOSED
• Add yellow continental crosswalks to all legs (4)
• Add advance stop lines to all legs (4)
• Add curb extensions to all legs (8)
L4. W S. OAK ST. & ARBOR VITAE ST.

EXISTING
- Signalized intersection
- Transverse-line crosswalks on all legs
- Countdown signals on all legs
- Protected left-turn signal phasing to the east and west legs (NB/SB)
- Permissive left-turn signal phasing to the north and south legs (EB/WB)
- On-street parking on the east, south and west legs

PROPOSED
- Add white continental crosswalks to all legs (4)
- Add advance stop lines to all legs (4)
- Reduce the curb return on the north leg (2)
- Add curb extensions to the south leg (2)
BICYCLE PARKING

- Add racks for 10 bicycles as described in Appendix A: Design Toolbox. Add racks for 10 skateboards/scooters. Add more if needed.

PROGRAM PLAN

Stakeholders who attended the SRTS Workshop identified the following programs appropriate for their school site. In addition to participant-suggested programs are recommended best practices. These will be modified and supplemented as experience with the program grows.

EDUCATION

- Bicycle/skateboard/scooter safety classes
- Pedestrian safety classes – walking field trips
- Parent workshop
- Morning assemblies
- Signs
- School messenger
- Newsletters
- School marquis
- Back-to-school night

ENCOURAGEMENT

- Principal participation
- Competition with other schools
- Walking school bus
- Park-and-walk at church parking lot on the northeast corner of S. Oak St. & W. Arbor Vitae St.
- Walk across America classroom contest (to map out how many combined miles are walked and how that distance translates on a map of the U.S.)
- Fire up your feet event

ENFORCEMENT

- Student/parent valet
- Parking enforcement
- Speed trailers
- Crossing guards
- Police ticketing

COST ESTIMATES

<table>
<thead>
<tr>
<th>ITEM DESCRIPTION</th>
<th>UNIT DESCRIPTION</th>
<th>UNIT</th>
<th>UNIT PRICE</th>
<th>NUMBER</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continental crosswalks</td>
<td>Per lane</td>
<td>$ 150</td>
<td>32</td>
<td>$ 4,800</td>
<td></td>
</tr>
<tr>
<td>Advance stop lines</td>
<td>Per lane</td>
<td>$ 120</td>
<td>14</td>
<td>$ 1,680</td>
<td></td>
</tr>
<tr>
<td>Advance yield lines (sharks teeth)</td>
<td>Per lane</td>
<td>$ 96</td>
<td>2</td>
<td>$ 192</td>
<td></td>
</tr>
<tr>
<td>Signs</td>
<td>EA</td>
<td>$ 500</td>
<td>4</td>
<td>$ 2,000</td>
<td></td>
</tr>
<tr>
<td>Reduced curb return and curb ramps</td>
<td>EA</td>
<td>$ 10,000</td>
<td>2</td>
<td>$ 20,000</td>
<td></td>
</tr>
<tr>
<td>Curb ramps</td>
<td>EA</td>
<td>$ 3,500</td>
<td>2</td>
<td>$ 7,000</td>
<td></td>
</tr>
<tr>
<td>Curb extension (bulbs-out) with curb ramps</td>
<td>EA (per corner)</td>
<td>$ 15,000</td>
<td>18</td>
<td>$ 270,000</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL COST $ 305,672
THIS PAGE IS LEFT INTENTIONALLY BLANK.
A SRTS workshop was hosted on September 14, 2016 and a make-up SRTS workshop was hosted on May 23, 2017. Due to lack of participation from the school, no one attended both workshops. Our team had a conversation with the school principal to discuss and record general issues and location-specific concerns related to walking and bicycling to school.
ISSUES RAISED AT THE SRTS WORKSHOP

GENERAL
- Speeding in front of the school
- Double parking in front of the school
- Lack of visible crosswalks (needs restriping)
- Lack of any signage (i.e. school zone signs, crosswalk signs)

LOCATION-SPECIFIC CONCERNS ADDRESSED IN THIS PLAN
- M1. W. 79th St. & S. 7th Ave.
  - Lack of visible crosswalks
- M2. W. 79th St. & S. 5th Ave.
  - Lack of visible crosswalks
  - Crossing guard on-site
- M3. W. 80th St. & S. 7th Ave.
  - Large pothole needs to be filled

OTHER RECORDED CONCERNS
- Florence Ave. & N. Eucalyptus Ave.
  - Lack of sidewalks
- W. 79th St. from N. La Brea Ave. to Crenshaw Blvd.
  - Personal safety concerns
  - Loiterers/homeless
- Van Ness Ave. from W. 79th St. to Manchester Blvd.
  - Speeding
The following map displays bicyclist and pedestrian involved crashes for a five-year period between 2009 and 2013.
The map below shows the proposed engineering projects along common routes used by students to get to school.
M1. W. 79TH ST. & 7TH AVE.

EXISTING
- 4-way stop
- Yellow transverse-line crosswalks on the north, south, and east legs
- Assembly D on the southbound approach of the north leg and eastbound approach of the west leg
- On-street parking permitted on all legs

PROPOSED
- Add a yellow continental crosswalk to all legs (4)
- Add an advance stop line to all legs (4)
- Add curb extensions to all legs (8)
**M2. W. 79TH ST. & S. 5TH AVE.**

**EXISTING**
- 4-way stops
- Yellow transverse-line crosswalks on the north, south, and west legs
- Assembly D sign on the southbound approach of the north leg and westbound approach of the east leg (misplaced)
- Assembly C sign on W. 79th St. westbound
- On-street parking permitted on all legs

**PROPOSED**
- Add a yellow continental crosswalk to all legs (4)
- Add an advance stop line to all legs (4)
- Add curb extensions to all legs (8)
M3. 80TH ST. & S. 7TH AVE.

EXISTING
- 4-way Stop
- Yellow transverse-line crosswalks on the north, east, and west legs
- On-street parking permitted on all legs

PROPOSED
- Add a yellow continental crosswalk to all legs (4)
- Add an advance stop line to all legs (4)
- Add curb extensions to all legs (8)
BICYCLE PARKING

- Add racks for 10 bicycles as described in the Design Toolbox section. Add racks for 10 skateboards/scooters. Add more if needed.

PROGRAM PLAN

- No education, encouragement and enforcement programs were raised during the workshops.

### COST ESTIMATES

<table>
<thead>
<tr>
<th>ITEM DESCRIPTION</th>
<th>UNIT</th>
<th>UNIT PRICE</th>
<th>NUMBER</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continental crosswalks</td>
<td>Per lane</td>
<td>$150</td>
<td>24</td>
<td>$3,600</td>
</tr>
<tr>
<td>Advance stop lines</td>
<td>Per lane</td>
<td>$120</td>
<td>16</td>
<td>$1,920</td>
</tr>
<tr>
<td>Curb extension (bulbs-out) with curb ramps</td>
<td>EA (per corner)</td>
<td>$15,000</td>
<td>24</td>
<td>$360,000</td>
</tr>
</tbody>
</table>

**TOTAL COST**  $365,520
SRTS WORKSHOP

A SRTS workshop was conducted on September 2, 2016. The following key stakeholders attended:

- Parents
- Principal
- Representative from the City Planning Department

ISSUES RAISED AT THE SRTS WORKSHOP

GENERAL

- Cars not yielding even at stop signs
- Parked cars blocking sidewalk
- Pick-up/drop-off procedures need to be addressed
- Parking/traffic enforcement has been beneficial
- Crossing guards not respected and no substitutes in absence
- Speeding
- Need “no event parking” signs
- Lack of bicycle racks

LOCATION-SPECIFIC CONCERNS ADDRESSED IN THIS PLAN

- **N1.** E. Manchester Blvd. & E. Hillcrest Blvd.
  - Lack of visible crosswalks
  - Intersection needs improvement

- **N2.** E. Arbor Vitae St. & S. Myrtle Ave.
  - Long distance between marked crosswalks

- **N3.** S. Flower St. & E. Nutwood Ave.
  - One-way stop for motorists on S. Flower St. – would benefit from a 3-way stop
  - Speeding on E. Nutwood Ave.

- **N4.** S. Flower St. & E. Kelso St.
  - 2-way stop for motorists on S. Flower St. – would benefit from a 4-way stop
ISSUES RAISED AT THE SRTS WORKSHOP (CONT.)

- **N5.** S. Flower St. & E. Arbor Vitae St.
  - Crossing guard present at certain times, but not always there

- **N6.** S. Osage Ave. & E. Nutwood Ave.
  - Need ADA-accessible ramps
  - No marked crosswalks

- **N7.** S. Osage Ave. & E. Kelso St.
  - Crossing needs improvement
  - Motorists do not stop at stop sign
  - Need traffic calming devices
  - Cars parked too close to the intersection (red curb markings are worn out and do not extend long enough)
  - Crossing guard present

- **N8.** S. Osage St. & E. Arbor Vitae St.
  - Crossing needs improvement

- **N9.** S. Prairie Av. & E. Kelso St./Pincay Dr.
  - Crossing needs improvement
  - Sidewalk holes and uneven surfaces
  - Crossing needs improvement

OTHER RECORDED CONCERNS

- Alley parallel between S. Osage Ave. & S. Flower St. from E. Nutwood Ave. to E. La Palma Dr.
  - Poor visibility for pedestrians walking in the alley
  - Speeding in alley

- E. Arbor Vitae St. from S. Flower St. to S. La Brea Ave.
  - Lack of crosswalks

- S. Osage Ave. from E. Kelso St. & E. Nutwood Ave.
  - Student drop-off area, but lacks student drop-off signs
  - Broken and uneven sidewalks

- S. Flower St. from E. Kelso St. & E. Nutwood Ave.
  - Broken and uneven sidewalks

- S. Prairie Avenue leading up to the school
  - Lack of “school zone” signs
The following map displays bicyclist and pedestrian involved crashes for a five-year period between 2009 and 2013.
The map below shows the proposed engineering projects along common routes used by students to get to school.
**N1. E. MANCHESTER BLVD. & E. HILLCREST BLVD.**

**EXISTING**
- Signalized intersection
- White transverse-line crosswalks on all legs
- Countdown signals on all legs (west side of the south leg not functioning)
- Permissive left-turn signal phasing for all legs
- On-street parking permitted on east side of north leg, west side of south leg, and west leg
- Bus stop on the north side of the west leg

**PROPOSED**
- Add a white continental crosswalk to all legs (4)
- Add an advance stop line to all legs (4)
- Evaluate adding protected left-turn signal phasing for all legs (4)

**AMERICANS WITH DISABILITIES ACT (ADA)**

**MISSING INVENTORY FROM FIELD AUDIT**
- **MISSING TACTILE WARNING DEVICE ON THE NORTHEAST CORNER**
**N2. E. ARBOR VITAE ST. & S. MYRTLE AVE.**

**EXISTING**
- Signalized intersection
- T-intersection
- White transverse-line crosswalks on the south, east, and west legs
- Countdown signals on the south leg crosswalk and the south side of the west leg crosswalk
- Automatic recall to the pedestrian signals on south leg crosswalk
- On-street parking permitted on south, east, and west legs

**PROPOSED**
- Add a white continental crosswalk to the south, east, and west legs (3)
- Add an advance stop line to the south, east, and west legs (3)
- Add curb extensions to the south, east, and west legs (6)
- Add countdown signals to the north side of the west leg crosswalk, and to the east leg crosswalk (3)

**AMERICANS WITH DISABILITIES ACT (ADA)**

**MISSING INVENTORY FROM FIELD AUDIT**
- MISSING TACTILE WARNING DEVICES ON ALL CORNERS
N3. S. FLOWER ST. & E. NUTWOOD AVE.

EXISTING
- T-intersection
- 1-way stop for Flower St.
- On-street parking permitted on south, east, and west legs

PROPOSED
- Add a white continental crosswalk to south leg (1)
- Add an advance stop line to the south leg (1)
- Add curb extensions to the south leg (2)
**N4. S. FLOWER ST. & E. KELSO ST.**

**EXISTING**
- 2-way stop for Flower St.
- Assembly D on eastbound approach of the east leg (misplaced)
- On-street parking permitted on all legs

**PROPOSED**
- Add a white continental crosswalk to all legs (4)
- Add an advance stop line to the north and south legs (2)
- Add an advance yield line to the east and west legs (2)
- Add an Assembly B sign to the west and east leg crosswalks (4)
- Add curb extensions to all legs (8)
- Relocate Assembly D sign on eastbound approach to the east leg (1)

---

**AMERICANS WITH DISABILITIES ACT (ADA)**

**MISSING INVENTORY FROM FIELD AUDIT**

- **MISSING TACTILE WARNING DEVICES** ON ALL CORNERS

---

**BEFORE**

---

**CHAPTER 9**
N5. S. FLOWER ST. & E. ARBOR VITAE ST.

EXISTING
- T-intersection
- 1-way stop for Arbor Vitae St.

PROPOSED
- Add a white continental crosswalk to the north leg (1)
- Add an advance stop line to the north leg (1)
- Add curb extensions to the north leg (2)
N6. S. OSAGE AVE. & E. NUTWOOD ST.

EXISTING
- 4-way stop
- Assembly C sign on Osage Ave. southbound
- SLOW SCHOOL XING pavement markings for the southbound approach on the south leg
- On-street parking permitted on all legs

PROPOSED
- Add a white continental crosswalk to all legs (4)
- Add an advance stop line to all legs (4)
- Add an Assembly D sign in advance of the Assembly C sign on southbound approach of the south leg (Assembly C not shown in graphic)
- Add curb extensions to all legs (8)
N7. S. OSAGE AVE. & E. KELSO ST.

EXISTING
- 4-way stop
- Yellow transverse-line crosswalk on all legs
- Assembly C sign on Osage Ave. northbound
- On-street parking permitted on all legs

PROPOSED
- Add a yellow continental crosswalk to all legs (4)
- Add an advance stop line to all legs (4)
- Add an Assembly D sign for eastbound approach of the west leg (1)
- Add curb extensions to all legs (8)
N8. S. OSAGE AVE. & E. ARBOR VITAE ST.

EXISTING
- 4-way stop
- Yellow ladder crosswalk on the west leg
- Assembly B sign for mid existing crossing
- On-street parking permitted on all legs

PROPOSED
- Add a white continental crosswalk to the north leg, south leg and the existing west leg of the north intersection crosswalk (3)
- Add an advance stop line to the north and south legs (2)
- Add curb extensions to the north and south leg crosswalk and the existing crosswalk on the west leg of the north intersection (6)

AMERICANS WITH DISABILITIES ACT (ADA) MISSING INVENTORY FROM FIELD AUDIT
- MISSING CURB RAMP FOR THE MID-BLOCK CROSSWALK
- MISSING TACTILE WARNING DEVICES ON THE existing MID-BLOCK CROSSWALK AND THE SOUTH LEG
N9. S. PRAIRIE AVE. & E. KELSO ST./PINCAY DR.

EXISTING
- Signalized intersection
- Yellow ladder crosswalks on all legs
- Assembly D sign on Pincay Dr. westbound
- Countdown signals on all legs
- Protected-permissive signal phasing for eastbound travel (SB)

PROPOSED
- Add an advance stop line to all legs (4)
- Evaluate adding a protected left-turn signal phasing on all legs
- Add an Assembly D sign in advance of the Assembly C signs on the southbound approach of the north leg, and the northbound approach of the south leg (2)
- Set all pedestrian signals to automatic recall (8)

PROPOSED LINEAR IMPROVEMENTS
- Add an Assembly C sign northbound on S. Prairie Ave between Kelso St./Pincay Dr. and Nutwood St.
- Add an Assembly C sign southbound on S. Prairie Ave between Kelso St./Pincay Dr. and La Palma Dr.
- Add an Assembly C sign westbound on Pincay Dr. between S. Prairie Ave. and Kareem Ct.
BICYCLE PARKING

- Add racks for 10 bicycles as described in Appendix A: Design Toolbox. Add racks for 10 skateboards/scooters. Add more if needed.

PROGRAM PLAN

Stakeholders who attended the SRTS Workshop identified the following programs appropriate for their school site. In addition to participant-suggested programs are recommended best practices. These will be modified and supplemented as experience with the program grows.

EDUCATION
- Education program around school
- Education on health benefits
- Pedestrian safety classes – parents and students

ENCOURAGEMENT
- Ciclavia-type event
- Punch cards facilitated by classrooms
- Prizes
- Principal and teachers walking with students
- Park-and-walk sites
- Parent led walking school bus
- Name walking routes – “blue route” “yellow route”

ENFORCEMENT
- No enforcement programs were raised during the workshop.

COST ESTIMATES

<table>
<thead>
<tr>
<th>ITEM DESCRIPTION</th>
<th>UNIT</th>
<th>UNIT PRICE</th>
<th>NUMBER</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continental crosswalks</td>
<td>Per lane</td>
<td>$ 150</td>
<td>64</td>
<td>$ 9,600</td>
</tr>
<tr>
<td>Advance stop lines</td>
<td>Per lane</td>
<td>$ 120</td>
<td>42</td>
<td>$ 5,040</td>
</tr>
<tr>
<td>Advance yield lines (sharks teeth)</td>
<td>Per lane</td>
<td>$ 96</td>
<td>2</td>
<td>$ 192</td>
</tr>
<tr>
<td>Signs</td>
<td>EA</td>
<td>$ 500</td>
<td>12</td>
<td>$ 6,000</td>
</tr>
<tr>
<td>Curb extension (bulbs-out) with curb ramps</td>
<td>EA (per corner)</td>
<td>$ 15,000</td>
<td>40</td>
<td>$ 600,000</td>
</tr>
<tr>
<td>Protected left-turns (turn lane and signals exist)</td>
<td>EA</td>
<td>$ 3,000</td>
<td>8</td>
<td>$ 24,000</td>
</tr>
<tr>
<td>Countdown signals</td>
<td>EA</td>
<td>$ 300</td>
<td>3</td>
<td>$ 900</td>
</tr>
</tbody>
</table>

**TOTAL COST**                                     $ 645,732
A SRTS workshop was conducted on April 26, 2017. The following key stakeholders attended:

- Parents
- School principal
- Crossing guards
- Inglewood Police Department
- Representative from the City Planning Department
ISSUES RAISED AT THE SRTS WORKSHOP

GENERAL

- Double-parking
- Students crossing midblock; parents dropping students off on the wrong side of the street
- Drivers not obeying stop signs
- Sight-distance visibility concerns for kids crossing from parked cars
- Speeding
- Lack of visible/marked crosswalks
- Lack of school area signs
- Broken, non-ADA accessible sidewalks

LOCATION-SPECIFIC CONCERNS ADDRESSED IN THIS PLAN

The following locations were identified in the workshop where crossings needed improvement:

- **01.** S. Doty Ave. & W. 111th St.
- **02.** Yukon Ave. S. & W. 109th St.
- **03.** Yukon Ave. S. & W. 110th St.
- **04.** Yukon Ave. S. & W. 111th St.
The following map displays bicyclist and pedestrian involved crashes for a five-year period between 2009 and 2013.
The map below shows the proposed engineering projects along common routes used by students to get to school.

WORTHINGTON ELEMENTARY SCHOOL COMMON ROUTES TO SCHOOL MAP

The map below shows the proposed engineering projects along common routes used by students to get to school.
O1. S. DOTY AVE. & W. 111TH ST.

EXISTING
- 4-way stop
- Yellow transverse crosswalk for the west and south legs
- On-street parking on the west leg, east leg, east side south leg, and east side north leg

PROPOSED
- Add a white continental crosswalk to all legs (4)
- Add an advance stop line to all legs (4)
- Add curb extensions to the east and west legs, the east side of the south leg and the east side of the north leg (6)
- Add tactile warning device on the west side of the north and south leg crosswalks (2)
O2. YUKON AVE. S. & W. 109TH ST.

EXISTING
- 4-way stop
- On-street parking on all legs

PROPOSED
- Add a white continental crosswalk to all legs (4)
- Add an advance stop line to all legs (4)
- Add curb extensions to all legs (8)
- Add LED-flashing lights on the stop signs for the north and south leg crosswalks (2)
O3. YUKON AVE. S. & W. 110TH ST.

EXISTING
- 4-way stop
- On-street parking on all legs

PROPOSED
- Add a white continental crosswalk to all legs (4)
- Add an advance stop line to all legs (4)
- Add curb extensions to all legs (8)
- Add LED-flashing lights on the stop signs for the north and south leg crosswalks (2)
O4. YUKON AVE. S. & W. 111TH ST.

EXISTING
- Signalized intersection
- Yellow transverse-line crosswalk for all legs
- Assembly D signs for all approaches
- Countdown signals on all legs
- On-street parking on all legs

PROPOSED
- Add a yellow continental crosswalk to all legs (4)
- Add an advance stop line to all legs (4)
- Add curb extensions to all legs (8)

AMERICANS WITH DISABILITIES ACT (ADA)
MISSING INVENTORY FROM FIELD AUDIT
- MISSING TACTILE WARNING DEVICES ON THE NORTHEAST, SOUTHEAST, AND SOUTHWEST CORNERS
**BICYCLE PARKING**

- Add racks for 10 bicycles as described in Appendix A: Design Toolbox. Add racks for 10 skateboards/scooters. Add more if needed.

**PROGRAM PLAN**

Stakeholders who attended the SRTS Workshop identified the following programs appropriate for their school site. In addition to participant-suggested programs are recommended best practices. These will be modified and supplemented as experience with the program grows.

**EDUCATION**

- **Existing Programs**
  - P.B.I.S. (Position Behavior Intervention System & Support): Citywide school campaign for students’ safety
  - Manuals for drop-off/pick-up procedures distributed in parent handbook during back-to-school night
  - Parents wait at the school-adjacent park to pick-up their kids; no designated loading area around school
- **Proposed Programs**
  - Inglewood Police to provide as-needed programs for traffic safety and personal safety
  - Education warnings and stops

**ENCOURAGEMENT**

- International Walk-to-School Day in October

**ENFORCEMENT**

- **Existing Programs**
  - School monitor that facilitates school pick-up time and has knowledge of which kids walk home
  - Two crossing guards @ Yukon Ave. & 111th St.
  - Police presence around school during drop-off/pick-up times
- **Proposed Programs**
  - Progressive ticketing
  - Coordinated drop-off/pick-up arrangement

**COST ESTIMATES**

<table>
<thead>
<tr>
<th>ITEM DESCRIPTION</th>
<th>UNIT</th>
<th>UNIT PRICE</th>
<th>NUMBER</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continental crosswalks</td>
<td>Per lane</td>
<td>$150</td>
<td>32</td>
<td>$4,800</td>
</tr>
<tr>
<td>Advance stop lines</td>
<td>Per lane</td>
<td>$120</td>
<td>16</td>
<td>$1,920</td>
</tr>
<tr>
<td>Tactile warning devices</td>
<td>EA</td>
<td>$500</td>
<td>2</td>
<td>$1,000</td>
</tr>
<tr>
<td>Curb extension (bulbs-out) with curb ramps</td>
<td>EA (per corner)</td>
<td>$15,000</td>
<td>30</td>
<td>$450,000</td>
</tr>
<tr>
<td>Add LED lights to stop signs with solar power</td>
<td>EA</td>
<td>$3,000</td>
<td>4</td>
<td>$12,000</td>
</tr>
<tr>
<td><strong>TOTAL COST</strong></td>
<td></td>
<td></td>
<td></td>
<td><strong>$469,720</strong></td>
</tr>
</tbody>
</table>
In order to promote active transportation, the City of Inglewood should take a comprehensive “6 E” approach – Education, Encouragement, Enforcement, Engineering, Evaluation, and Equity.

Engineering recommendations such as bike lanes or intersection modifications should be paired with non-infrastructure enforcement, encouragement, and education programs in order to ensure that all users — pedestrians, bicyclists, and motorists — understand and are encouraged to utilize means of active transportation safely and efficiently. Evaluation of programs serve to measure whether the goals and policies are being met. Equity concerns are incorporated throughout the other E’s to understand and address obstacles, create access, and ensure safe, active and healthy opportunities for people of all ages and abilities. This chapter provides information about various programs that could be enacted as the City, and other partners see fit.
COMMUNITY TASK FORCE

The City should first consider organizing a formal community task force that meets regularly to discuss walking and bicycling issues. The City’s Technical Advisory Committee can provide oversight if needed.

Through the Active Transportation & Safe Routes to School (ATP/SRTS) planning process, Inglewood staff engaged a wide range of constituents. These stakeholders can form the task force. Task force members can include:

- City staff
- Students
- Parents
- Teachers
- Principals
- Residents
- Law enforcement
- Local bicycle organizations
- Community organizations
- Neighborhood business owners

There are several reasons to organize a high-level, community-led task force:

- **Identify key problems.** Who better than Inglewood residents, business owners, students and employees to identify the barriers to walking and bicycling? This group will be able to discuss specific issues and locations in Inglewood that may serve as barriers to walking and bicycling. Working as a team, the task force can then address problems with a multi-faceted approach.

- **Craft messaging.** Successful campaigns and messaging are typically those crafted by and for the community itself. Key stakeholders will know what messaging will resonate with their peers.

- **Organize the community.** By including a diverse set of stakeholders in the task force, each member will be able to relay messages to his or her constituents. This will help increase the level of public participation.

- **Promote the programs.** Stakeholders will feel ownership over much of the programming, and will likely want to promote the cause. Members can spread the message and encourage the rest of the community to get involved. Examples of programming by type (enforcement, education, encouragement, evaluation) that have been successful in other communities are outlined below. With the assistance of the task force, Inglewood should customize a comprehensive program for itself.

---

**GENERAL GUIDE TO PROGRAM DEVELOPMENT**

As the City develops each program, staff should keep in mind the following concepts recommended by the Pedestrian and Bicycle Information Center (PBIC):

1. **Make walking and bicycling “try-able.”** Give people a chance to try walking and bicycling instead of driving. This could be by organizing a group walk and ride to school or providing route maps for a citywide walk and/or bike event, etc.

2. **Communicate the behavior you want to see.** Bumper stickers, banners, signs, pamphlets, and public service announcements can all convey messages to encourage travel by foot and bicycle.

3. **Reward behavior.** Provide incentives and gifts to motivate people to try walking or bicycling for a trip. These strategies are especially effective for school-age children.

4. **Make it convenient.** Design pedestrian and bike-friendly places throughout the city; prioritize improvements to key destinations.

5. **Institutionalize support for walking and bicycling.** Strong policies that support walking and bicycling will help guide programs and ensure ideas have staying power.

6. **Capitalize on other agendas.** Make walking and bicycling part of the solution to a wider range of issues the community faces, such as obesity, health, environmental concerns, and economic development.
DEFINE THE PROBLEMS AND GOALS

Defining education-related problems and goals should be the first step prior to programming. Some of the key education problems have already been identified as part of this planning process. It is likely that law enforcement has found motorists speeding on neighborhood streets, or passing bicyclists too closely at high speed. Some examples of common walking and bicycling-related problems that can be addressed through education are:

- Commuters are unaware of alternative ways of traveling to work
- Developers, designers, and engineers are not using the best design practices for pedestrians and bicyclists
- Motorists are not aware that bicyclists can legally ride in the road
- Bicyclists do not know how to ride safely and predictably
- Motorists and bicyclists do not understand the meaning of shared lane markings or other bicycle markings and signs

After the community and city staff identify the key education-related problems, they can create goals and objectives. If possible, they should be measurable.

Educational programs must be tailored to specific audiences in order to effectively address the behaviors the programs seek to modify. For example, a child bicyclist will need different education on how to ride than an adult bicyclist. Similarly, different messaging will resonate with teen drivers than adult drivers.

The most common audiences that will benefit from education programs include:

- Road users — drivers (young, adult, older), bicyclists and pedestrians (children, teens, adults/parents/neighbors, seniors)
- Commuters and employers
- Officials and policy makers — engineers, planners, council members, law enforcement
- Visitors

For each group, the City should consider when and how the audience should receive the information, and the demographic factors that may affect how the audience understands/perceives the information. Descriptions of educational campaigns and programs that have been successful in other communities are described below. Each should be tailored to Inglewood’s specific issues and audiences.
Inglewood can promote and educate residents about bicycling through frequent public service announcements (PSAs) on local channels and the city’s website. Organizations such as the National Highway Traffic Safety Administration (NHTSA), Safe Kids Coalition, and California Office of Traffic Safety, have existing PSAs that Inglewood can use. Inglewood can incorporate its own logos and slogans into these PSAs. Inglewood’s mayor or council members could also record their own radio or television announcements for broadcast.

Attractive maps with walk and bicycle routes to destinations in Inglewood can serve as both a promotional tool and an educational tool. The guide should showcase how easy it is to get around Inglewood through alternative modes, and include tips on safe walking and bicycling. The guide should be available on the city’s website and distributed at City Hall, Chamber of Commerce, Engineering/Traffic Department, Recreation and Culture Department, County Sheriffs, the Antelope Valley Partners for Health, libraries, schools, retail businesses, and local bicycle shops.

Inglewood can incorporate educational messages such as “STOP! It could be someone you love in the crosswalk” or “Use the other pedal and slow down” into media coverage, events, street banners, maps, posters, stickers, guides, etc. Inglewood can work with the community to craft messaging that addresses specific educational goals. Messaging should be multilingual if necessary.

Educational signage and pavement markings such as “bicyclists may use full lane”, and “riding the wrong way” signs on sidewalks can help spread educational messages. Depending on the type of sign or marking, the City may need to go through an experimental process with the California Traffic Control Device Committee (CTCDC) and/or Federal Highway Administration (FHWA).

The City should work with the Inglewood Police Department to consider creating a Diversion Program. This program serves as “traffic school” for any road user that violates rules concerning walking and bicycling. Rules concerning pedestrian and bicyclist behavior are often misunderstood. The program should specifically address motorists on how to interact with pedestrians and bicyclists, and clarify misconceptions. Huntington Beach is one of the only cities in Southern California that has a diversion program; it can serve as an example for Inglewood.

The site could provide information such as an up to date list of walking and bicycling events, maps and safety education tips. Links to regional walk and bike websites can be provided.

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>PUBLIC SERVICE ANNOUNCEMENTS</strong></td>
<td>Inglewood can promote and educate residents about bicycling through frequent public service announcements (PSAs) on local channels and the city’s website. Organizations such as the National Highway Traffic Safety Administration (NHTSA), Safe Kids Coalition, and California Office of Traffic Safety, have existing PSAs that Inglewood can use. Inglewood can incorporate its own logos and slogans into these PSAs. Inglewood’s mayor or council members could also record their own radio or television announcements for broadcast.</td>
</tr>
<tr>
<td><strong>WALK &amp; BICYCLE MAPS AND GUIDES</strong></td>
<td>Attractive maps with walk and bicycle routes to destinations in Inglewood can serve as both a promotional tool and an educational tool. The guide should showcase how easy it is to get around Inglewood through alternative modes, and include tips on safe walking and bicycling. The guide should be available on the city’s website and distributed at City Hall, Chamber of Commerce, Engineering/Traffic Department, Recreation and Culture Department, County Sheriffs, the Antelope Valley Partners for Health, libraries, schools, retail businesses, and local bicycle shops.</td>
</tr>
<tr>
<td><strong>PRINT AND MEDIA CAMPAIGN</strong></td>
<td>Inglewood can incorporate educational messages such as “STOP! It could be someone you love in the crosswalk” or “Use the other pedal and slow down” into media coverage, events, street banners, maps, posters, stickers, guides, etc. Inglewood can work with the community to craft messaging that addresses specific educational goals. Messaging should be multilingual if necessary.</td>
</tr>
<tr>
<td><strong>SIGNS/PAVEMENT MARKINGS</strong></td>
<td>Educational signage and pavement markings such as “bicyclists may use full lane”, and “riding the wrong way” signs on sidewalks can help spread educational messages. Depending on the type of sign or marking, the City may need to go through an experimental process with the California Traffic Control Device Committee (CTCDC) and/or Federal Highway Administration (FHWA).</td>
</tr>
<tr>
<td><strong>ENFORCEMENT EDUCATION</strong></td>
<td>The City should work with the Inglewood Police Department to consider creating a Diversion Program. This program serves as “traffic school” for any road user that violates rules concerning walking and bicycling. Rules concerning pedestrian and bicyclist behavior are often misunderstood. The program should specifically address motorists on how to interact with pedestrians and bicyclists, and clarify misconceptions. Huntington Beach is one of the only cities in Southern California that has a diversion program; it can serve as an example for Inglewood.</td>
</tr>
<tr>
<td><strong>INGLEWOOD WALKS &amp; BIKES WEBSITE</strong></td>
<td>The site could provide information such as an up to date list of walking and bicycling events, maps and safety education tips. Links to regional walk and bike websites can be provided.</td>
</tr>
</tbody>
</table>
Safe Routes to School (SRTS) refers to a variety of programs aimed at promoting walking and bicycling to school, and improving traffic safety around schools. The program takes a comprehensive “5E” approach (as defined in this chapter) with specific engineering, education, encouragement, enforcement, and evaluation. The programs involve partnerships among school staff, parents, students, city staff, the school district, neighbors, and law enforcement. The National Center for Safe Routes to School has in-depth programming information. Integrating educational messages into a comprehensive SRTS program can be a very effective way to kick-start a citywide program. Specific education tools include:

- Pedestrian skills training for 1st and 3rd graders
- Bicycle skills training for 3rd and 5th graders
- Messaging to parents about safe driving, walking and bicycling habits
- Creating drop-off and pick-up procedures
- Incorporating information about walking and bicycling into classroom subjects such as math or science (e.g., calculate average bicycling speeds or distances)
- Assemblies or classroom sessions about safety
- At-school bicycle and pedestrian rodeos, which are simulated traffic environments where students can learn to walk and bicycle safely

### TABLE 10.2

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECONOMIC, HEALTH, AND ENVIRONMENTAL BENEFITS</td>
<td>The City’s PSA can educate employers on the potential economic, health, and environmental benefits if their employees walked and bicycled instead of drove.</td>
</tr>
</tbody>
</table>

### TABLE 10.3

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAFE ROUTES TO SCHOOL</td>
<td>Teens need different educational messages than adults or children. The City should work with local teen-organizations, Social Justice Learning Institute, or schools to facilitate a participatory process whereby teens create educational messages. Youth Participatory Action Research (YPAR) is an effective way to assist youth to create visuals, videos, or campaigns for safety among their peers. The California Department of Public Health has guides on YPAR and youth-led projects. The City should work with the Inglewood Police Department, School District, each school to sponsor annual bicycle rodeos for each school. These rodeos feature bike safety inspections and a safety lecture, followed by a ride on a miniature “chalk street” course where young cyclists are shown where and how to apply the rules.</td>
</tr>
<tr>
<td>YOUTH SPECIFIC EDUCATION</td>
<td>Teens need different educational messages than adults or children. The City should work with local teen-organizations, Social Justice Learning Institute, or schools to facilitate a participatory process whereby teens create educational messages. Youth Participatory Action Research (YPAR) is an effective way to assist youth to create visuals, videos, or campaigns for safety among their peers. The California Department of Public Health has guides on YPAR and youth-led projects. The City should work with the Inglewood Police Department, School District, each school to sponsor annual bicycle rodeos for each school. These rodeos feature bike safety inspections and a safety lecture, followed by a ride on a miniature “chalk street” course where young cyclists are shown where and how to apply the rules.</td>
</tr>
</tbody>
</table>

### CENTINELA ELEMENTARY INT’L WALK TO SCHOOL DAY

JOIN US

JOIN US WALK TO SCHOOL DAY
### TABLE 10.3 YOUTH SPECIFIC EDUCATION PROGRAMS (CONT.)

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERSONAL SAFETY TRAINING</td>
<td>The City should work with the Inglewood Police Department to understand what materials exist around personal safety to train and distribute to students and parents. This training prepares students to address any issues on their way to school, where they feel unsafe due to crime, harassment or violence.</td>
</tr>
</tbody>
</table>

### ADULT ROAD USERS EDUCATION

### TABLE 10.4 ADULT ROAD USERS EDUCATION PROGRAMS

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKILLS TRAINING</td>
<td>The City should work with organizations to offer bicycling skills training on the weekends. The League of American Bicyclists has lists of League Certified Instructors who can also teach courses on bicycle safety.</td>
</tr>
<tr>
<td>CITY WEBPAGE AND MAILERS</td>
<td>The City should create a designated webpage for bicycle programs, events, and education. The page should have a link to this Plan, maps, and safety tips. The City can also distribute bicycle safety tips in utility bills to all residents.</td>
</tr>
<tr>
<td>BICYCLE SHOP COURSES</td>
<td>The City can work with local bicycle shops to promote bicycle safety skills courses. The bicycle shop could also help spread the word for education courses through its clientele list.</td>
</tr>
<tr>
<td>BICYCLE REPAIR WORKSHOPS</td>
<td>Partnering with local bike shops and/or bicycle advocacy organizations, such as the Los Angeles County Bicycle Coalition, the City can offer instructional workshops teaching cyclists how to perform basic bicycle maintenance and repair.</td>
</tr>
</tbody>
</table>

### OFFICIALS & POLICYMAKERS EDUCATION

### TABLE 10.5 OFFICIALS & POLICYMAKERS EDUCATION PROGRAMS

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAINING FOR LAW ENFORCEMENT</td>
<td>Law enforcement officers are first-responders to bicycle-involved collisions. Due to the complexity of these collisions, in many cities fault is often assigned incorrectly, and relevant information miss-recorded or omitted. Officers should receive special training to understand how to record and respond to bicycle-involved crashes. Officers that patrol on bicycles should receive special skills training.</td>
</tr>
<tr>
<td>BICYCLE AUDITS</td>
<td>Inglewood can lead regular bicycling audits as part of outreach strategies for new development projects, or as a comprehensive SRTS program. A bicycle audit leads interested stakeholders on a set course to discuss how comfortable the area is, concerns, and what can be done to improve the area. Educational components to the audit include discussing safety at specific locations and safe riding tips before the audit.</td>
</tr>
</tbody>
</table>
ENCOURAGEMENT

Encouragement strategies promote bicycling as fun activities, and generate excitement and interest. Encouragement programs play a key role in making bicycling “the norm.” By showcasing how fun and easy it can be to bicycle, there is an opportunity to shift the perceptions of the community. Encouragement programs should target the same audiences as education campaigns. Many encouragement programs are most successful when paired with existing institutions – such as schools or businesses.

Strategies to encourage bicycling are limited only by the imagination. They can be anything creative such as contests, rides, bicycle-friendly business districts, etc. Getting the community involved to create messaging and programs will be essential to program success. Activities that can serve as a model to kick-start Inglewood’s encouragement programs are described below.

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBLIC ART</td>
<td>Public art, such as murals and sculptures, have been used to promote ideals and inform the community of important issues. The City can solicit help from local artists, children, and volunteers to create art that would encourage residents to live physically active lives.</td>
</tr>
<tr>
<td>MOBILE EXHIBIT</td>
<td>The City could organize a traveling exhibit promoting bicycling. The exhibit could have photo displays of new facilities around Inglewood, videos promoting bicycling, maps and guides, etc. This kiosk could be present during community events and local festivals.</td>
</tr>
<tr>
<td>FIRST FRIDAY BIKE RIDES</td>
<td>The City should create a campaign to bike to school the first Friday (or Wednesday) of every month. This will help create awareness, make it fun to bike together as families and neighbors.</td>
</tr>
<tr>
<td>TWO-WHEEL TUESDAYS</td>
<td>The City can work with community members to start a designated day that encourages residents to ride their bicycles together to work or for short trips. The City can promote the days through its website, and partner to offer incentives such as free food or snacks at parks throughout Inglewood for those who arrive by bicycle.</td>
</tr>
<tr>
<td>CICLOVIA</td>
<td>CicLAvia in Los Angeles helps residents see a new use for streets, and gets them used to bicycling and walking in a safe environment without cars. Volunteers are needed to support the event.</td>
</tr>
</tbody>
</table>
Employers could organize a “commuter of the month” competition for the employee that commutes to work using alternative modes of transportation the most trips of the month. Prizes can vary.

May is National Bicycle Month, and the City can piggy-back on this designated month with various activities for employers and employees. For example, employers can organize a bicycle to work day or week, with events at the employment site or prizes for those who commute by bicycle.

Inglewood Police Officers distribute “tickets” to students that are “caught being good,” which means they were following safety rules. The “tickets” are typically coupons for discounts at local businesses or a certificate. The City can approach the Police Department to see if there is any interest to spearhead such a program, as well as coordinate with local businesses to receive coupons that appeal to youth.

International Walk to School Day, held in October each year, joins children and adults from around the world to celebrate walking and bicycling to school. Generally, the City can help provide support to schools by providing incentive items, Police support along predetermined walking routes, and meeting locations throughout the City, as well as participating in the event.
CHAPTER 10

STUDENT OR CLASSROOM COMPETITIONS WITH PRIZES

The implementation of student or classroom competitions is typically school-driven. There are many existing templates for tracking progress. These include templates for punch cards that are marked whenever a child walks and programs such as “Fire up your Feet” which track information online. The City can support a citywide competition and provide materials for competitions, such as pedometers, reflectors, stickers, and plaques. Competitions can be between students (e.g., student with most miles walked), or between classrooms (e.g., classroom with the most students walking to school).

WALKING SCHOOL BUS/BICYCLE TRAIN

A walking school bus consists of groups of students accompanied by adults who walk a pre-planned route to school. Bicycle trains work like walking school buses. Adults, or older students, can lead the ride to school along a route that others can join on. Implementation of these programs are typically parent and school-driven. The City can support walking school buses and bicycle trains by volunteering to lead walks/rides, providing Police support along pre-determined routes, and reviewing routes for any safety concerns.

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARENT AWARDS</td>
<td>Schools can recognize parents that have been exemplary volunteers to support the Safe Routes to School (SRTS) program with awards or certifications. Alternatively, these schools and parents staff can be recognized at City Council meetings or school meetings such as Back-to-School night.</td>
</tr>
<tr>
<td>PARK-AND-WALK</td>
<td>The City can work with local businesses and faith-based institutions to create agreements that allow their parking lots to serve as park-and-walk meeting locations. Distribute this information to the schools and promote the opportunity throughout the community.</td>
</tr>
<tr>
<td>PRINCIPAL, CITY COUNCIL MEMBERS, MAYOR, AND/OR TEACHER-LED WALKS</td>
<td>Key community leaders, such as the mayor, council members, principals and teachers, can lead regular walks in the community outside of school hours to encourage walking. The City can help organize staff to assist in leading walking events and/or a separate walks as part of existing events, such as Earth Day in April.</td>
</tr>
<tr>
<td>WALK-AND-ROLL WEDNESDAYS</td>
<td>Wednesday can be a designated day where students are encouraged to ride their bicycles or walk together to school and/or for short trips. The City can promote a regular walking and bicycling day of the week or month for the community, and advertise it through available channels (at school, town hall, council meetings, etc.).</td>
</tr>
<tr>
<td>STUDENT OR CLASSROOM COMPETITIONS WITH PRIZES</td>
<td>The implementation of student or classroom competitions is typically school-driven. There are many existing templates for tracking progress. These include templates for punch cards that are marked whenever a child walks and programs such as “Fire up your Feet” which track information online. The City can support a citywide competition and provide materials for competitions, such as pedometers, reflectors, stickers, and plaques. Competitions can be between students (e.g., student with most miles walked), or between classrooms (e.g., classroom with the most students walking to school).</td>
</tr>
</tbody>
</table>
ENFORCEMENT

Enforcement activities bring the community together to promote safe bicycling and driving. Law enforcement plays a key role in this effort; however, residents and youth can get involved as well.

The City should continue its practice with local law enforcement officers identifying and understanding unsafe behavior and locations. These can range from speeding vehicles to bicycles riding the wrong direction. A law enforcement representative should continue to be part of the community task force. The County Police Department currently conducts enforcement at schools.

The City should maintain outreach at schools and with an established community task force to help identify hot spots and issues. This will assist law enforcement and community members in sustaining a campaign.

LAW ENFORCEMENT METHODS

Law enforcement agencies use a variety of methods to enforce driver and cyclist behavior. Active education campaigns should coincide with targeted enforcement. If officers plan to target speeding, a media campaign informing citizens to slow down and obey the posted speed limit will complement the effort. Enforcement methods include:

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPEED ENFORCEMENT IN SCHOOL ZONES</td>
<td>Strict enforcement of speed laws in school zones can improve the safety for children bicycling to school. A ‘zero tolerance’ policy for speeders in school zones, and an increase in fines for drivers who violate the posted school zone speed limit, are both potential approaches.</td>
</tr>
<tr>
<td>TRAFFIC COMPLAINT HOTLINE</td>
<td>Inglewood residents can report non-emergency traffic violations to law enforcement if there is an established traffic complaint hotline. Officers and deputies can target problem areas more effectively with records of traffic complaints. This also allows the community to engage efficiently with officers.</td>
</tr>
<tr>
<td>SPEED TRAILERS &amp; ACTIVE SPEED MONITORS</td>
<td>Speed trailers and active speed monitors display the speed of oncoming vehicles. Speed trailers are portable, whereas speed monitors are installed at permanent locations. Both devices help officers track motorist speed, display current speed to motorists, and create awareness of the posted speed limit. Devices should be placed at known locations with reported speeding, and should be used in conjunction with random ticketing operations.</td>
</tr>
<tr>
<td>PRESENCE</td>
<td>The presence of officers and deputies at random locations throughout the City can be an enforcement tool in and of itself. Drivers’ fear of getting ticketed can serve to correct behavior.</td>
</tr>
<tr>
<td>OTHER PERSONAL SAFETY CONCERNS</td>
<td>Often, people do not bike because they are concerned about their personal safety. Law enforcement can increase patrol in areas identified by residents. Officers and deputies should work with the community to create an enforcement strategy that addresses these concerns.</td>
</tr>
</tbody>
</table>
COMMUNITY ENFORCEMENT

Residents have an important part to play in enforcement initiatives. Community members can work with officers to assist with catching repeat offenders, letting officers know where there are problems, and setting examples for friends and neighbors. The school safety committee and crossing guards meet regularly to discuss student safety issues.

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PACE VEHICLE</td>
<td>Residents can set the pace on streets in their neighborhood by driving no faster than the posted speed limit. On streets with only one lane in each direction, this will effectively force other motorists to drive slower.</td>
</tr>
<tr>
<td>CORNER CAPTAINS</td>
<td>Adult volunteers stand at corners along routes to school so they can monitor students walking and deter any activity that may be harmful to students. The City can alert neighbors along key routes to school to participate in the corner captain program by coming out to their front yard during the morning walk to school.</td>
</tr>
<tr>
<td>CROSSING GUARDS</td>
<td>Crossing guards promote safe behaviors at crosswalks by helping children safely cross the street at key locations and reminding drivers of the presence of pedestrians. The Inglewood Unified School District already has a crossing guard program, which could be expanded to cover additional intersections near each school.</td>
</tr>
<tr>
<td>POLICE ENFORCEMENT PRESENCE</td>
<td>The City can work with the Inglewood Police Department to provide an enforcement presence discourages dangerous behaviors on and off the school campus. This may mean issuing warnings to drivers breaking traffic laws. Drivers who have made a minor error will often respond to a warning from an officer by being more careful. Drivers who continue to violate traffic laws need to be ticketed.</td>
</tr>
<tr>
<td>NEIGHBORHOOD WATCH</td>
<td>Neighborhoods can work with the Inglewood Police Department to observe motor vehicle speeds and report crimes. The City and Police Department can provide regular updates to the Neighborhood Watch group about any illicit activity and on the Safe Routes to School (SRTS) program.</td>
</tr>
<tr>
<td>PEDESTRIAN DECOY PROGRAM</td>
<td>This program is used in areas where drivers are not yielding to pedestrians in marked crosswalks. Plainclothes Police officers cross the street, while another officer monitors driver behavior from a distance. The officer then will issue a warning or citation and educational materials depending on the situation. The City can share this idea with the Police Department, and collect data from observational surveys to understand appropriate locations for law enforcement to monitor.</td>
</tr>
<tr>
<td>RADAR ENFORCEMENT</td>
<td>Strict enforcement of speed laws in school zones can improve the safety for children walking and bicycling to school. A ‘zero tolerance’ policy for speeders in school zones, and an increase in fines for drivers who violate the posted school zone speed limit, are both potential approaches. The City can work with the Police Department to target enforcement based on areas of most concern.</td>
</tr>
</tbody>
</table>

**TABLE 10.10**

SCHOOL & COMMUNITY ENFORCEMENT PROGRAMS
Survey questions such as “what deters you from bicycling?” or “what mode do you use for short trips?” aim to understand attitudes toward bicycling, and common concerns. These surveys can be done citywide, or as part of a Safe Routes to School (SRTS) program for parents. **Methodology:** The National Center for Safe Routes to School has a standard parent survey form that the City should distribute to schools annually for administration. The City should collect completed forms, analyze data, and submit results to the schools and the National Center for Safe Routes to School.
CRASH DATA

Analyzing crash data for type of crash, parties involved, and location will give a picture of safety of bicyclists, pedestrians and motorists. This data can also help set priorities.

For SRTS programs aiming to increase safety, crash data of bicycle and pedestrian-involved crash locations are the most direct method of assessing bicyclist and pedestrian safety. One way to measure the safety impact of SRTS is to examine the relationship between the SRTS project and the collisions between motor vehicles and school-age bicyclists and pedestrians. In this Plan, crash data has been collected 2009-2013.

**Methodology:** Crashes around each school can be tracked every year using the Transportation Injury Mapping System (TIMS) data.

STUDENT TALLIES (SCHOOLS ONLY)

This survey asks what mode a respondent used for a certain trip. Mode of travel surveys are commonly done in schools as part of SRTS to find out how many children walked, bicycled, were driven, etc.

**Methodology:** The National Center for Safe Routes to School has a standard student tally form that the City should distribute to schools annually for administration. Or, the schools can use a simple “how did you get to school today” raise your hand tally. Ideally, this should be done every year.

TRAFFIC DATA

Average daily traffic (ADT) volumes provide the standard measurement for vehicle traffic on the road and are the basis for most decisions regarding street improvements and traffic calming projects.

**Methodology:** The City should track ADT volumes over time on key streets and common routes near schools. In this case, changes in ADT volumes before project implementation and after project completion may indicate changes in travel mode choice and overall safety.

SPEED SURVEYS

Another measure can include evaluating speed reductions in a pedestrian or SRTS project that include traffic-calming measures. Understanding how the infrastructure improvement has led to changes in speeds, can determine the effectiveness of the pedestrian or SRTS program.

**Methodology:** The City can conduct speed surveys on a regular basis (every year or two) on key streets near schools where traffic-calming measures have been placed. These surveys will yield prevailing speeds that can be compared over time.

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>BICYCLE &amp; PEDESTRIAN COUNTS</strong></td>
<td>Counting numbers of bicyclists around the City can help staff prioritize improvements. These counts can also be included in travel demand models. The Southern California Association of Governments developed a count methodology that is now available for use by local jurisdictions. <strong>Methodology:</strong> The City should conduct a pedestrian and bicycle count at least every other year and preferably annually. The City can work with organizations to organize and administer a count. The counts typically require volunteers.</td>
</tr>
<tr>
<td><strong>CRASH DATA</strong></td>
<td>Analyzing crash data for type of crash, parties involved, and location will give a picture of safety of bicyclists, pedestrians and motorists. This data can also help set priorities. For SRTS programs aiming to increase safety, crash data of bicycle and pedestrian-involved crash locations are the most direct method of assessing bicyclist and pedestrian safety. One way to measure the safety impact of SRTS is to examine the relationship between the SRTS project and the collisions between motor vehicles and school-age bicyclists and pedestrians. In this Plan, crash data has been collected 2009-2013. <strong>Methodology:</strong> Crashes around each school can be tracked every year using the Transportation Injury Mapping System (TIMS) data.</td>
</tr>
<tr>
<td><strong>STUDENT TALLIES (SCHOOLS ONLY)</strong></td>
<td>This survey asks what mode a respondent used for a certain trip. Mode of travel surveys are commonly done in schools as part of SRTS to find out how many children walked, bicycled, were driven, etc. <strong>Methodology:</strong> The National Center for Safe Routes to School has a standard student tally form that the City should distribute to schools annually for administration. Or, the schools can use a simple “how did you get to school today” raise your hand tally. Ideally, this should be done every year.</td>
</tr>
<tr>
<td><strong>TRAFFIC DATA</strong></td>
<td>Average daily traffic (ADT) volumes provide the standard measurement for vehicle traffic on the road and are the basis for most decisions regarding street improvements and traffic calming projects. <strong>Methodology:</strong> The City should track ADT volumes over time on key streets and common routes near schools. In this case, changes in ADT volumes before project implementation and after project completion may indicate changes in travel mode choice and overall safety.</td>
</tr>
<tr>
<td><strong>SPEED SURVEYS</strong></td>
<td>Another measure can include evaluating speed reductions in a pedestrian or SRTS project that include traffic-calming measures. Understanding how the infrastructure improvement has led to changes in speeds, can determine the effectiveness of the pedestrian or SRTS program. <strong>Methodology:</strong> The City can conduct speed surveys on a regular basis (every year or two) on key streets near schools where traffic-calming measures have been placed. These surveys will yield prevailing speeds that can be compared over time.</td>
</tr>
</tbody>
</table>
Another type of evaluation is to define goals and then corresponding objectives and measurements to achieve those objectives. For example, suppose the City plans to install bike lanes on a street with the objective to increase bicycle activity and decrease bicyclist-involved crashes. Prior to installation, staff can conduct bicycle counts and analyze the location of bicycle crashes. Periodically after installation, staff can measure these same factors. Analysis of these data will determine how effective the treatment was in achieving these goals.

The Pedestrian and Bicycle Information Center in collaboration with Safe Routes to School experts identify several key goals, objectives, and measurements on saferoutesinfo.org. For example:

**GOAL: ENCOURAGE SPEED REDUCTION**

- **OBJECTIVE:** Hold one news conference and deliver informational fliers to all parents regarding speed awareness campaign.
- **MEASURE:** Number of news conferences and fliers distributed.
- **OBJECTIVE:** Reduce average speeds in school zones to 25 mph within 1 year.
- **MEASURE:** Speed of vehicles near schools; number of citations.
The following Metro non-infrastructure programs and policies support active transportation throughout the region. The following list programs has been adapted from the Metro Active Transportation Strategic Plan (2016) to include only those relevant to Inglewood.

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>PROGRAMS &amp; DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRANT PROGRAM</td>
<td>Call for Projects - Competitive grant program that provides local, state, and federal funds for surface transportation improvements in seven modal categories, including bicycle and pedestrian capital improvements. Other modal categories eligible for funding include regional surface transportation improvements, goods movement improvements, signal synchronization &amp; bus speed improvements, transportation demand management, and transit capital.</td>
</tr>
<tr>
<td></td>
<td>Metro Open Streets Grant Program - Competitive grant program that funds regional car-free events to provide opportunities to 1) ride transit, walk and ride a bike, possibly for the first time, 2) encourage future mode shift to more sustainable transportation modes, and 3) foster the development of multi-modal policies and infrastructure at the city/community level.</td>
</tr>
<tr>
<td></td>
<td>Wayfinding Signage Grant Pilot Program - Provides funds to eligible agencies wishing to install static wayfinding signage within one mile to and from Metro fixed guideway stations that have opened in June 2017.</td>
</tr>
<tr>
<td></td>
<td>Transit Oriented Development (TOD) Planning Grant Program - Grant Program designed to spur the adoption of local land use regulations that are supportive of Transit Oriented Development in Los Angeles County.</td>
</tr>
<tr>
<td>BICYCLE SERVICES</td>
<td>Bicycle Parking - Metro provides bicycle parking and continues to expand bicycle services at many stations throughout the system to improve first last mile connections, including providing bike racks, bike lockers and secure bike hubs.</td>
</tr>
<tr>
<td>EDUCATION &amp; ENCOURAGEMENT PROGRAMS AND ACTIVITIES</td>
<td>Active Transportation Campaign – Annual campaign to promote awareness of and participation in walking and bicycling countywide. A single marketing effort unites events for Bike Month and Walktober, and cross-promotes complementary efforts from many organizations and municipalities across the county.</td>
</tr>
<tr>
<td></td>
<td>Bike Month LA - Month-long marketing and event effort to highlight bicycling as a mode of transportation. Creates multiple opportunities and incentives for people to try riding bicycles for utilitarian trips, perhaps for the first time. Bike Month culminates in Bike to Work Day, with pit stops across the county, and Bike Night, a Metro-hosted gathering at Union Station.</td>
</tr>
</tbody>
</table>

Source: Metro Active Transportation Strategic Plan (2016)
<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>PROGRAMS &amp; DESCRIPTION</th>
</tr>
</thead>
</table>
| Education & Encouragement Programs and Activities                        | **Community Bicycle Rides** - Metro’s guided bicycle ride events provide safe, supportive environments such that people of all skill and comfort levels may engage in riding a bike in an urban setting. The rides also provide a controlled environment in which people can practice safe riding skills and provide a valuable overall encouragement opportunity.  
**Bicycle Safety Classes** - Metro provides bicycle safety skills classes free to the public. This resource is available to any Los Angeles County resident and classes are held in locations across the county. Classes may range from entry-level to expert instructor certification and are moving towards regionally-tailored educational materials adapted from national standards.  
**Complete Streets Education and Training** - Provides training to applicable Metro staff and local government agency planners, engineers, decision-makers, traffic safety professionals, public health professionals, and community organizations about developing a Complete Streets policy, as well as implementing Complete Streets and incorporating high quality design to help comply with the California Complete Streets Act of 2008 and Metro’s 2014 Complete Streets Policy.  
**First Last Mile Training Pilot Program** - Metro will offer a series of trainings to local staff, elected officials, and other stakeholders. The trainings will inform staff on how to design, seek funding, and implement a first last mile project. Policy level trainings will cover communication and community issues that often arise as part of first last mile and active transportation efforts. The trainings will be geared toward near term implementation and will result in preliminary concept plans that can be directed toward funding sources in the near term. |

Source: Metro Active Transportation Strategic Plan (2016)
The following table lists the next steps for implementation of the Metro Active Transportation Strategic Plan (2016). The table has been adapted from the Plan to describe the actions for implementation that are relevant to Inglewood. Each implementation action includes the applicable participants and initiation timeframe.

<table>
<thead>
<tr>
<th>IMPLEMENTATION ACTION</th>
<th>PARTICIPANTS</th>
<th>INITIATION TIMEFRAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implement temporary (i.e., pop-up, tactical urbanism) active transportation and first last mile projects to build community support and foster multi-modal policies and long-term infrastructure improvements.</td>
<td>Metro, SCAG, Local Jurisdictions, Public Health, Nonprofits, Advocates, Other Interested Stakeholders</td>
<td>0-2 years</td>
</tr>
<tr>
<td>Continue to promote safe travel to schools in Los Angeles County through the development of Metro Safe Routes to School (SRTS) Resource Manual (toolkit); Walk-Safe, Bike-Safe (train the trainer) Safety Education Campaign; continued development and maintenance of the Metro SRTS website; and other related activities.</td>
<td>Metro, Local Jurisdictions, Other Stakeholders</td>
<td>ongoing</td>
</tr>
<tr>
<td>Continue collaboration with key stakeholders and other Metro departments in the development of campaigns, printed materials, video and other visuals supporting safe walking, bicycling, and utilization of public transit for travel to and from schools within Los Angeles County.</td>
<td>Metro, Local Jurisdictions, Other Participants</td>
<td>ongoing</td>
</tr>
<tr>
<td>Continue to enhance education and training for bicyclists, pedestrians, bus operators, and other roadway users to improve awareness and safer interactions between these users of the roadway.</td>
<td>Metro, Transit Operators</td>
<td>ongoing</td>
</tr>
<tr>
<td>Continue annual active transportation campaigns, such as advertising/messaging, bike and walk to work/school, radio advertisements, social media, and other related activities.</td>
<td>Metro</td>
<td>ongoing</td>
</tr>
<tr>
<td>Work with health care providers, community groups, businesses, and other organizations to promote bicycle and pedestrian education programs and highlight benefits. Continue to seek partnerships and innovation opportunities.</td>
<td>Metro, Health Care Providers, Community Groups, Businesses, Other Stakeholders</td>
<td>ongoing</td>
</tr>
<tr>
<td>Continue bicycle traffic safety classes, community bicycle rides, and explore other education and safety programs to promote bicycling and mode shift. Evaluate the effectiveness of these projects and programs and report outcomes. Refine as necessary to maximize effectiveness.</td>
<td>Metro, Law Enforcement, Local Jurisdictions, School Districts, Nonprofits, Advocates, Other Stakeholders</td>
<td>ongoing</td>
</tr>
<tr>
<td>Support local agency efforts on bicycle and pedestrian education and safety.</td>
<td>Metro, Local Jurisdictions, Nonprofits, Advocates</td>
<td>ongoing</td>
</tr>
</tbody>
</table>

Source: Metro Active Transportation Strategic Plan (2016)
<table>
<thead>
<tr>
<th>IMPLEMENTATION ACTION</th>
<th>PARTICIPANTS</th>
<th>INITIATION TIMEFRAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expand bicycle parking at Metro stations and stops, including creating bicycle hubs, increasing bicycle parking, implementing and expanding bike share, and providing other bicycle facilities.</td>
<td>Metro, Local Jurisdiction, Other Stakeholders</td>
<td>ongoing</td>
</tr>
<tr>
<td>Explore opportunities to add additional bicycle accommodations on buses and trains.</td>
<td>Metro, Local Jurisdiction, Other Stakeholders</td>
<td>ongoing</td>
</tr>
</tbody>
</table>

Source: Metro Active Transportation Strategic Plan (2016)
PERFORMANCE METRICS

It will be important for the City to evaluate the success of its Active Transportation Plan and other efforts to become more bicycle and pedestrian friendly over time. This will inform that City of what is working as well as the progress that has been made. It will also support future grant applications and bolster the City’s chances of winning more funds. By assessing planning efforts, the City ensures that they will be implemented. “What gets measured gets done.” We also need to tie performance metrics to the goals and objectives of these planning efforts, to ensure that the desired outcomes are being met. Last, assessing performance informs the City as to modifications that may need to be made.

The following describes some key metrics that the City could use for evaluation.

PROGRESS ON IMPLEMENTATION

Keeping track of what has been implemented will provide the City with a yardstick to assess its progress. The following shows the most important results to measure. The City could choose to add other categories in a similar fashion.

- **BIKEWAYS IMPLEMENTED**
  As the City puts in the bikeways recommend in this Plan, it should keep track of the mileage completed. Ideally, this will be broken down by bikeway type. Translating each of these to a percentage of bikeways completed of those in the Plan, will provide a clear assessment of what is done, and what is yet to be completed. This can be shown with numbers, as well as on a map that color codes “completed” and “planned”.

- **NUMBER OF IMPROVED PEDESTRIAN CROSSINGS**
  As the City makes the pedestrian improvements recommend in this Plan, it should keep track of the number of intersections completed. Translating these to a percentage of pedestrian intersections completed of those in the Plan, will provide a clear assessment of what is done, and what is yet to be completed. This can be shown with numbers, as well as on a map that color codes “completed” and “planned”.

- **NUMBER OF BICYCLE PARKING DEVICES INSTALLED**
  As the City puts in the bicycle parking devices recommend in this Plan, it should keep track of the number installed. This will be broken down by bicycle parking type; racks and high security parking (lockers, attendant parking, automated parking). Translating each of these to a percentage of bike parking devices installed of those in the Plan, will provide a clear assessment of what is done, and what is yet to be completed. This can be shown with numbers, as well as on a map that color codes “completed” and “planned”.

- **NUMBER OF NEW CURB RAMPS AND TACTILE DEVICES**
  As the City puts in new curb ramps and tactile devices on curb ramps recommend in this Plan, it should keep track of the number installed. Translating each of these to a percentage of curb ramps and tactile devices installed of those in the Plan, will provide a clear assessment of what is done, and what is yet to be completed. This can be shown with numbers, as well as on a map that color codes “completed” and “planned”.

CHAPTER 10
• **RETROFITTED NUMBER OF NON-ADA-COMPLIANT BUS STOPS**
  As the City retrofits bus stops to become ADA compliant, it should keep track of the number retrofitted. Translating each of these to a percentage of bus stops retrofitted of those in the Plan, will provide a clear assessment of what is done, and what is yet to be completed. This can be shown with numbers, as well as on a map that color codes “completed” and “planned”.

• **RETROFITTED NUMBER OF NON-ADA-COMPLIANT SIDEWALKS**
  This Plan does not take inventory of non-ADA-compliant sidewalks. This is something that should be done as the City prepares its ADA transition plan. Some sidewalks in Inglewood have driveways that have cross slopes greater than 2%, and others that have confined passages less than the 48 inches that are proposed as new guidelines by the United States Access Board. As the City retrofits non-ADA-compliant sidewalks, it should keep track of the footage of those installed. Translating each of these to a percentage of non-ADA-compliant sidewalks retrofitted of those existing will provide a clear assessment of what is done, and what is yet to be completed. This can be shown with numbers, as well as on a map that color codes “completed” and “planned”.

### TABLE 10.15 ASSESSING PROGRESS ON IMPLEMENTATION

<table>
<thead>
<tr>
<th>IMPLEMENTATION ELEMENT</th>
<th>UNITS OF MEASUREMENT</th>
<th>RECOMMENDED FREQUENCY OF EVALUATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bikeways</td>
<td>Miles implemented</td>
<td>As completed, or annually</td>
</tr>
<tr>
<td>Pedestrian crossings</td>
<td>Number improved</td>
<td>As completed</td>
</tr>
<tr>
<td>Bicycle parking</td>
<td>Number of bicycles accommodated, broken down by type</td>
<td>As installed, or annually</td>
</tr>
<tr>
<td>Curb ramps and tactile devices</td>
<td>Number of each</td>
<td>As installed, or annually</td>
</tr>
<tr>
<td>Bus stops</td>
<td>Number retrofitted</td>
<td>As retrofitted</td>
</tr>
<tr>
<td>Sidewalks</td>
<td>Footage retrofitted</td>
<td>As installed, or annually</td>
</tr>
</tbody>
</table>
ASSESSMENT OF MEETING DESIRED OUTCOMES

Evaluating performance will be important to ensure that the City is meeting the overall goals of its active transportation efforts. Measuring this can gauge the degree to which the City is making progress.

The following can be used to evaluate some of the most important outcomes.

- **BICYCLE AND PEDESTRIAN COUNTS**
  Counting the number of bicycles and pedestrians is a reliable way of assessing progress in attracting people to bicycling and walking. To produce valid results, we need to compare “apples to apples”. In other words, we need to assess the same locations, on similar dates and days of the week every year, at the same times of day and with the same method each time. The City may decide to modify locations, times and method from time to time, but maintaining consistency allows the City to see how much progress is made. This Plan conducted a first round of counts.

The City could continue to count these same locations, on similar dates and days, at the same times and with the same methods if it chooses. The most productive modifications would be to add count locations, and to switch to automatic counters. Ideally, the count locations should reflect the diversity of streets in Inglewood. This would include downtown, major streets, collector streets, residential streets, streets with bikeways and streets without bikeways. Most important will be to conduct counts before and after new bikeways and pedestrian improvements are put in to assess how these improvements change travel patterns.

Counting every year or two will provide the City with solid data. If the City switches to automatic counters, the data can continuously stream in, providing the highest level of assessment.

The Southern California Association of Governments has set up a Bike Count Data Clearinghouse for cities to upload their counts. The City can contribute its data to this clearinghouse to help this effort.
• **BICYCLE AND PEDESTRIAN MODE SHARE**

Mode share measures the portion of trips made by each travel mode. This allows us to compare one mode with others. Over time, Inglewood's active transportation efforts should increase the share of people walking and bicycling, and decrease the number of people driving.

The following describes the three primary methods the City can use to assess mode share.

- The City can use the bicycle and pedestrian counts in conjunction with counts of motor vehicle traffic to see what percentage of the total they comprise at count locations. If the count locations represent the broad cross section of streets in Inglewood, this will give a general citywide average. To produce a full mode share, the City would add in transit ridership data.

- The US Census collects data on how commute to work trips are taken. The data collected is widespread and allows for a good comparison between each Census to see if the mode share has increased. However, since it only asks people about their commute to work, all non-work trips are excluded. Non-work trips are more plentiful than work trips and are shorter. Therefore, a higher percentage of them are done on bicycle or foot.

- The City could conduct citywide random sample surveys of residents asking them about their travel patterns. A properly worded questionnaire could assess mode share.

• **STUDENTS WALKING AND BICYCLING**

Successful safe routes to school programs encourage more students to walk and bicycle. The best way to do this is to conduct simple mode share tallies every year asking students how they arrived at school. These can be compared to former years to assess progress.

• **CRASH ANALYSIS**

The bikeway and pedestrian improvements should make walking and bicycling safer. The number and severity of crashes should decrease. The Inglewood Police Department collects crash data. The California Transportation Injury Mapping System compiles data statewide into an easy to access data format. The City can conduct regular assessments of its crash record. The data contains valuable information that can be analyzed. It can be used to plan and prioritize future improvements that respond to crashes and their causes.

It is important to note that it is common for cities to experience a greater number of bicycle and pedestrian crashes as the number of people riding bikes and walking increases. If the number of crashes increases, it doesn’t necessarily follow that the city has become more dangerous. It can simply mean that more people are exposed. To assess whether the improvements are making conditions safer we need to normalize the crash data for the number of users.

Some of the most important data to analyze includes:

- Location
- Pedestrian or bicyclist
- Fatality or injury
- Severity
- Cause
- Daytime or nighttime
- Movement of the victim, and movement of the vehicle
**PREVAILING SPEEDS**

As a direct correlation exists between speed and crash severity, it will be important to slow vehicles on streets with high vehicle speeds. Prevailing speeds are assessed on city streets to inform the setting of speed limits. The City can also use this information to determine whether the bicycle or pedestrian improvement has slowed vehicle traffic.

**PUBLIC HEALTH OUTCOMES**

As improving public health is one of the primary drivers of making communities more bicycle and pedestrian friendly, direct measurement of health outcomes. Two available data sources can be used to assess this. First, the Los Angeles County Department of Public Health collects data on obesity and diabetes periodically. The City can compare the data overtime to see if these are increasing or decreasing. Second, schools conduct fitness exams. These can be compared with exams of former years. These data don’t directly assess the impact of the active transportation program. There are many external factors that contribute to changes and it is difficult to isolate the causes. But they can be used as an indicator. One way to partially isolate this data is to compare Inglewood’s data with the same data in other cities that don’t have as ambitious of effort.

**RETAIL SALES TAX REVENUE**

Improving walking and bicycling conditions can improve economic environments. This may be especially true where “main street” contexts have widened sidewalks, improved pedestrian intersection crossings, or added protected bike lanes. Comparing retail sales tax collections before and after can help to assess the impact. As the economic success of a street depends on many factors, it’s not easy to isolate the causation of the bicycle and pedestrian improvements. One way to partially isolate causes will be to compare streets that have had significant active transportation improvements, with those that haven’t.
FUNDING

A variety of potential funding sources, including local, state, regional, and federal funding programs, may be used to construct the proposed bicycle and pedestrian improvements. Most of the Federal and State programs are competitive, and involve the completion of extensive applications with clear documentation of the project need, costs, and benefits. Local funding for projects can come from sources within jurisdictions that compete only with other projects in each jurisdiction’s budget. A detailed program-by-program of available funding programs along with the latest relevant information follows:

In order to plan an implementation schedule, we assume Inglewood will receive its fair share of predictable funding programs based on population. Inglewood is home to 0.29% of California’s population, 0.61% of SCAG’s regional population, and 1.12% of the County-wide population so we assume that it will receive this amount of state funding.

Since Inglewood has prepared this Plan, it should be able to attract more than its fair share, so these percentages are a conservative assumption.

1. California Department of Finance, 2017
3. California Department of Finance, 2017
FEDERAL FUNDING

FIXING AMERICA’S SURFACE TRANSPORTATION (FAST) ACT

Passed in December 2015, the Fixing America’s Surface Transportation (FAST) Act is five-year legislation starting in the current Federal fiscal year, FY2016 to improve the Nation’s surface transportation infrastructure, including our roads, bridges, transit systems, and rail transportation network. Over the five-year period FY 2016-2020, $305 billion in spending has been set aside for all modes.

The FAST Act eliminates the 2012 Moving Ahead for Progress in the 21st Century Act (MAP-21), but since MAP-21 projects were still carried over under the FAST Act, bicycling and walking projects are also eligible for the following core programs:

NATIONAL HIGHWAY PERFORMANCE PROGRAM (NHPP)

The NHPP was amended under the FAST Act to provide the condition, performance and construction of new facilities on the National Highway System.

- **ADMINISTERING AGENT:** FHWA apports funding for the State (Caltrans) that then divides that total among apportioned programs
- **FUNDING SOURCE:** Highway Account of the Highway Trust Fund
- **ELIGIBLE PROJECTS:** Bicycle and pedestrian projects associated with a National Highway System facility are eligible. Projects must be identified in the Statewide Transportation Improvement Program (STIP)/Transportation Improvement Program (TIP) and be consistent with the Long-Range Statewide Transportation Plan and the Metropolitan Transportation Plans.
- **DISTRIBUTION & FREQUENCY:** Between $23-24 billion annually nationwide

Given that this funding source is less predictable in estimating allocations towards active transportation projects, we will not include it in our calculation of annual funds for the implementation plan.

More information can be found at:
http://www.fhwa.dot.gov/specialfunding/nhpp/160309.cfm

SURFACE TRANSPORTATION BLOCK GRANT (STBG) PROGRAM (Formerly Surface Transportation Grant under MAP-21)

The STBG program has the most flexible eligibilities among all Federal-aid highway programs and promotes flexibility in State and local transportation decisions to best address their transportation needs.

- **ADMINISTERING AGENT:** FHWA apports funding for the State (Caltrans) that then divides that total among apportioned programs
- **FUNDING SOURCE:** Highway Account of the Highway Trust Fund
- **ELIGIBLE PROJECTS:** Flexible in eligibility requirements; STBG may be used for projects to preserve and improve the conditions and performance on any Federal-aid highway, bridge and tunnel projects on any public road, pedestrian and bicycle infrastructure, and transit capital projects. Specifically, the TA set-aside funds include a variety of
smaller scale transportation projects such as pedestrian and bicycle facilities, recreational trails, safe routes to schools, and community improvements

- DISTRIBUTION & FREQUENCY: STBG requires a Transportation Alternatives (TA) set-aside. Between $11-12 billion annually nationwide under the STBG; approximately $850 million annually nationwide of the STBG funds is dedicated towards the TA set-aside. California administers these funds through the Active Transportation Program (ATP)

Given that this funding source is less predictable in estimating allocations towards active transportation projects, we will not include it in our calculation of annual funds for the implementation plan.

More information can be found at:
http://www.fhwa.dot.gov/fastact/factsheets/stbgfs.cfm

HIGHWAY SAFETY IMPROVEMENT PROGRAM (HSIP)

The HSIP program aims to achieve a significant reduction in traffic fatalities and serious crashes through the implementation of infrastructure-related highway safety improvements.

- ADMINISTERING AGENT: FHWA apportions funding for the State (Caltrans) that then divides that total among apportioned programs
- FUNDING SOURCE: Highway Account of the Highway Trust Fund
- ELIGIBLE PROJECTS: Project applications must demonstrate that the proposed engineering improvements will increase the safety of the proposed project area. Project areas that have a prior history of injuries or fatalities are more likely to be funded. These improvements may be on any public road or publicly owned bicycle and pedestrian pathway or trail, and can include the use of devices such as traffic signals, curb extensions, and crosswalks
- DISTRIBUTION & FREQUENCY: Between $2-3 billion annually nationwide; in California, Caltrans releases HSIP funds approximately every one to two years. HSIP assigned approximately $158 million in Cycle 7 (2015) and approximately $219 million in Cycle 8 (2016)

In HSIP Cycle 8, Inglewood received $2,654,820 in funding for installing traffic signal improvements, pedestrian countdown signal heads, and raised center medians.

For the purposes of this Implementation Plan, we looked at the last 5 years (2012-2016) of total funding awarded through the HSIP program in California and calculated that the program allocates roughly $128 million annually. If Inglewood gets its fair share based on population, we will plan on receiving $383,000 per year.

More information can be found at:
CONGESTION MITIGATION AND AIR QUALITY IMPROVEMENT (CMAQ)

The CMAQ program is implemented to support surface transportation projects and other related efforts that contribute air quality improvements and provide congestion relief.

- **ADMINISTERING AGENT**: FHWA apportions funding for the State (Caltrans) that then divides that total among apportioned programs
- **FUNDING SOURCE**: Highway Account of the Highway Trust Fund
- **ELIGIBLE PROJECTS**: While the legislation places emphasis on air quality projects or other elements of flexible federal aid highway spending such as diesel engine retrofits and alternative fuel infrastructure, funds may also be used for bicycle and pedestrian-related projects such as bikeways, bicycle parking, crosswalks, sidewalks, signs and signals
- **DISTRIBUTION & FREQUENCY**: Approximately $2-3 billion annually nationwide
- **MATCH REQUIREMENTS**: 20% local or state match is required for these funds

Given that this funding source is less predictable in estimating allocations towards active transportation projects, we will not include it in our calculation of annual funds for the implementation plan.

More information can be found at:
http://www.fhwa.dot.gov/environment/air_quality/cmaq/

The FAST Act also creates a priority safety fund to focus on education and enforcement programs that reduce pedestrian and bicycle fatalities. Only states in which 15% or more of overall fatalities are bicyclists or pedestrians will receive funds. California is one of these states and should be eligible.

More information can be found at:
https://www.fhwa.dot.gov/fastact/
http://www.fhwa.dot.gov/map21/summaryinfo.cfm

TRANSPORTATION INVESTMENTS GENERATING ECONOMIC RECOVERY (TIGER) GRANT PROGRAM

The Consolidated Appropriations Act, 2017 appropriated $500 million, available through September 30, 2020, for National Infrastructure Investments otherwise known as TIGER Grants. The TIGER Grant Program allows State and local agencies to obtain funding for multi-modal, multi-jurisdictional projects that are more difficult to support through traditional DOT programs. TIGER can provide capital funding directly to any public entity, including municipalities, counties, port authorities, tribal governments, and MPOs (rather than traditionally only to State DOTs). As of writing this, the 2018 guidelines have not been released.

- **ADMINISTERING AGENT**: U.S. Department of Transportation
- **FUNDING SOURCE**: Consolidated Appropriations Act (released every year) determines the funding requirements
- **ELIGIBLE PROJECTS**: Capital projects include bridge and infrastructure repairs, safety improvements to reduce fatalities and serious injuries, access to critical health services; projects that connect communities and people to jobs, services, and education; and, projects that anchor economic revitalization and job growth. Projects that demonstrate significant non-Federal financial contributions will increase its competitiveness
opportunities, principally for low and moderate income persons.

Given that this funding source is less predictable in estimating allocations towards active transportation projects, we will not include it in our calculation of annual funds for the implementation plan.

More information can be found at:
https://www.transportation.gov/tiger/about

COMMUNITY DEVELOPMENT BLOCK GRANTS (CDBG)

CDBG entitlement program allocates annual grants to larger cities and urban counties to develop viable communities by providing decent housing, a suitable living environment, and opportunities to expand economic opportunities, principally for low and moderate income persons.

- ADMINISTERING AGENT: US Department of Housing and Urban Development (HUD)
- ELIGIBLE PROJECTS: Projects address affordable housing needs and fair housing issues, assist homeless persons, provide adequate infrastructure, and support programs that enhance civic/community design. Bicycle and pedestrian facilities are eligible uses of these funds
- DISTRIBUTION & FREQUENCY: Annually; CDBG funds only pay for projects in areas of economic need. HUD determines the amount of each grant by using a formula comprised of several measures of community need. The City of Inglewood must certify with the HUD that at least 70% of all funding received will be used to benefit persons of low and moderate income in CDBG eligible areas. Additionally, up to 15% of CDBG program funds may be for public services in eligible areas
- MATCH REQUIREMENTS: N/A

Given that this funding source is less predictable in estimating allocations towards active transportation projects, we will not include it in our calculation of annual funds for the implementation plan.

More information can be found at:
Federal: https://www.hud.gov/program_offices/comm_planning/communitydevelopment/programs
Inglewood: https://www.cityofinglewood.org/163/
Community-Development-Block-Grant-CDBG
STATE & REGIONAL FUNDING

ACTIVE TRANSPORTATION PROGRAM (ATP)
(INCLUDES SAFE ROUTES TO SCHOOL)*

The Active Transportation Program (ATP) results from Senate Bill 99, Chapter 359, and Assembly Bill 101, Chapter 354 that passed and was signed by Governor Brown. The purpose of ATP is to increase the use of active modes of transportation such as bicycling and walking by funding projects that improve options.

- **ADMINISTERING AGENT:** State (Caltrans) administers the ATP, MPOs (SCAG) oversees the competitive project selection process
- **FUNDING SOURCE:** ATP consolidates existing federal and state transportation programs, including the Transportation Alternatives Program (TAP), Bicycle Transportation Account (BTA), and the state Safe Routes to School (SRTS) into a single program
- **ELIGIBLE PROJECTS:** ATP funds are available for design and construction of any bicycle or pedestrian project, including infrastructure projects, plans, and non-infrastructure projects; capital improvements such as environmental design, right-of-way, and construction are also eligible
- **DISTRIBUTION & FREQUENCY:** Caltrans has administered three cycles of ATP grants in 2014, 2015, and 2017. The 2019 Cycle 4 Call-for-Projects is scheduled to be released early 2018, but the total funding amount has not been determined. The funds are distributed through competitive grants with the following formula:
  - 40% to Metropolitan Transportation Organizations in urban areas with populations greater than 200,000
  - 10% will funnel to small urban and rural areas with 200,000 or fewer people
  - 50% will be available statewide in competitive grants
- **MATCH REQUIREMENTS:** N/A

In ATP Cycle 1 (2014), Inglewood was awarded $486,000 towards the development of the Active Transportation Plan (ATP) and Safe Routes to School (SRTS) Plan (this Plan). Under the SRTS program for Cycle 9 (2010-2011), Inglewood received $270,600 for four intersection improvements adjacent to La Tijera Elementary School.

Because of preference given to disadvantaged communities, and the fact that

**TABLE 11.1 ESTIMATED ATP FUNDING FOR INGLEWOOD**

<table>
<thead>
<tr>
<th>ACTIVE TRANSPORTATION PROGRAM (ATP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATP Annual Funding Amount</td>
</tr>
<tr>
<td>($129 million from ATP, plus $100 million from SB-1)</td>
</tr>
<tr>
<td>40% Allocation for MPOs (i.e. SCAG)</td>
</tr>
<tr>
<td>Inglewood’s Fair-share based on SCAG’s Population (0.61%)</td>
</tr>
<tr>
<td>50% Allocation for Competitive Statewide Basis</td>
</tr>
<tr>
<td>Inglewood’s Fair-share based on State Population (0.29%)</td>
</tr>
<tr>
<td>Inglewood’s Total Annual Fair-share from ATP</td>
</tr>
</tbody>
</table>
Inglewood has this Plan, it should be able to attract more funds than the statewide average. For purposes of this estimates, conservatively, Inglewood should be able to receive 0.29% of state funds and 0.61% of the SCAG MPO regional fund. Caltrans has allocated $129 million per year, paired with the $100 million in funds from SB-1 for active transportation projects, for a total of $229 million per year. Based on these numbers, Inglewood may be able to receive $890,810 per year. Refer to Table 11.1 for more details. The California State Legislature is deliberating on modifications to this program as of the writing of this report. If the new legislation passes, the guidelines for this funding source will change accordingly.

More information can be found at: http://www.dot.ca.gov/hq/LocalPrograms/atp/

STATE TRANSPORTATION IMPROVEMENT PROGRAM (STIP)

The State Transportation Improvement Program (STIP) is a multi-year capital improvement program of transportation projects on and off the State Highway System. Each STIP will cover a 5-year period and add two new years of programming capacity.

The STIP consists of two state programs: the Interregional Transportation Improvement Program (ITIP), prepared by the State (Caltrans); and the Regional Transportation Improvement Program (RTIP), prepared by regional planning agencies (SCAG). Approximately 75% of new STIP funding is allocated to RTIP, which is sub-allocated to counties per formula basis, and 25% is distributed to the ITIP, which is allocated to the State (Caltrans) for projects with interregional significance.

• ADMINISTERING AGENT: State (Caltrans); cities work through their regional planning agency, County Transportation Commission (Metro), or MPO (SCAG) to nominate projects to be included in the STIP
• FUNDING SOURCE: Revenues from Transportation Investment Fund and other funding sources
• ELIGIBLE PROJECTS: Bicycle and pedestrian projects may be programmed in the STIP so long as they are eligible for State Highway Account or Federal funds
• DISTRIBUTION & FREQUENCY: Generally occurs every two years.
• MATCH REQUIREMENTS: N/A

Given that this funding source is less predictable in estimating allocations towards active transportation projects, we will not include it in our calculation of annual funds for the implementation plan.

More information can be found at:
http://dot.ca.gov/hq/LocalPrograms/STIP.htm

CALTRANS TRANSPORTATION PLANNING GRANT PROGRAM

A total of $40.8 million for the FY 2018-2019 is available for transportation planning projects statewide. Caltrans administers these grants every year. The following transportation grants are awarded on the competitive basis:
SUSTAINABLE COMMUNITIES GRANTS ($29.5 MILLION)

Encourage local and regional planning that furthers state goals, including, but not limited to, the goals and best practices cited in the Regional Transportation Plan (RTP) Guidelines adopted by the California Transportation Commission.

- ADMINISTERING AGENT: State (Caltrans) will distribute to MPOs (SCAG) through competitive grants and formula-based grants
- FUNDING SOURCE: Federal and state-funded through Senate Bill 1 and the State Highway Account
- ELIGIBLE PROJECTS: Multimodal transportation and land use projects that contribute to the State’s greenhouse gas reduction targets, employ the goals and best practices cited in the 2017 RTP guidelines, and address the needs of disadvantaged communities
- DISTRIBUTION & FREQUENCY: Grants are available in amounts from $50,000 to $500,000
- MATCH REQUIREMENTS: 11.47% local match

STRATEGIC PARTNERSHIPS GRANTS ($4.3 MILLION)

Identify and address statewide, interregional, or regional transportation deficiencies on the State highway system in partnership with Caltrans. New for FY 2018-19 is a transit component that will fund planning projects that address multimodal transportation deficiencies with a focus on transit.

- ADMINISTERING AGENT: State (Caltrans) will distribute to MPOs (SCAG) through competitive grants and formula-based grants
- FUNDING SOURCE: Federally-funded through the Federal Highway Administration (FHWA) ($1.5 million), and Federal Transit Administration (FTA) ($2.8 million)
- ELIGIBLE PROJECTS: Projects that address multi-modal deficiencies with a focus on transit
- DISTRIBUTION & FREQUENCY: Grants are available in amounts from $100,000 to $500,000
- MATCH REQUIREMENTS: State highway systems via FHWA funds require 20% local match; transit projects via FTA funds require 11.47% local match

ADAPTATION PLANNING GRANTS ($7 MILLION)

Support planning actions at local and regional levels that advance climate change efforts on the transportation system.

- ADMINISTERING AGENT: State (Caltrans)
- FUNDING SOURCE: Public Transportation Account (PTA)
- ELIGIBLE PROJECTS: Projects that have adaption planning efforts, including transportation adaptation planning. Eligible projects must have a transportation nexus per Article XIX Sections 2 and 3 of the California Constitution
- DISTRIBUTION & FREQUENCY: Grants are available in amounts from $100,000 to $1,000,000
- MATCH REQUIREMENTS: 11.47% local match

Given that these funding source is less predictable in estimating allocations towards active transportation projects, we will not include it in our calculation of annual funds for the implementation plan.

More information can be found at: http://www.dot.ca.gov/hq/tpp/grants.html
SCAG provides its Sustainability Planning Grants Program for agencies that were not awarded funds in preceding cycles to develop capacity and be competitive for future funding by developing active transportation plans or participating in the region’s successful Go Human event series.

- **ADMINISTERING AGENT:** SCAG
- **FUNDING SOURCE:** Active Transportation Program (ATP) & SB-1
- **ELIGIBLE PROJECTS:** Planning and non-infrastructure projects that promote walking and bicycling, and to provide preliminary funding for future applicants that submit active transportation projects.
- **DISTRIBUTION & FREQUENCY:** For SCAG’s first 2017 Call for Proposals, the program allocated $2 million in grant awards of up to $200,000 each. Public agencies that have been previously awarded a California Active Transportation Program Grant are ineligible, and Inglewood is ineligible.
- **MATCH REQUIREMENTS:** N/A

Since Inglewood was awarded funds in preceding cycles to develop the City of Inglewood Active Transportation Plan (this Plan), the City remains ineligible for apply. However, additional funding may be available on a competitive basis in the future.

More information can be found at:
http://sustain.scag.ca.gov/Pages/DemoProjApplication.aspx

**TRANSPORTATION DEVELOPMENT ACT (TDA)**

The Transportation Development Act (TDA) provides two major sources of funding for public transportation: the Local Transportation Fund (LTF) and the State Transit Assistance fund (STA). These funds are for the development and support of public transportation needs that exist in California and are allocated to areas of each county based on population, taxable sales and transit performance. Some counties have the option of using LTF for local streets and roads projects, if they can show there are no unmet transit needs.

- **ADMINISTERING AGENT:** State (Caltrans)
- **FUNDING SOURCE:** The TDA provides two funding sources: (1) State Transit Assistance (STA) is derived from a portion of the sales tax on gasoline and diesel fuel and (2) Local Transportation Fund (LTF) is derived from a ¼ cent of the general sales tax collected statewide. The LTF is a stable ongoing funding source for local transit operators throughout the state
- **ELIGIBLE PROJECTS:** The TDA funds a wide variety of transportation programs, including planning and program activities, pedestrian and bicycle facilities, community transit services, public transportation, and bus and rail projects
- **MATCH REQUIREMENTS:** N/A

More information can be found at:
http://dot.ca.gov/hq/MassTrans/State-TDA.html
OFFICE OF TRAFFIC SAFETY (OTS)

The California Office of Traffic Safety (OTS) seeks to reduce motor vehicle fatalities and injuries through the pedestrian and bicycle safety program. Funding is provided for education, enforcement, and engineering projects that improve safety on existing facilities. Eligible projects include traffic safety studies, helmet giveaways, and safety education programs.

- **ADMINISTERING AGENT:** California OTS
- **FUNDING SOURCE:** California Vehicle Code (Sections 2908 and 2909) authorizes the apportionment of federal highway safety funds to the OTS program
- **ELIGIBLE PROJECTS:** Bicycle safety programs are eligible programs for OTS start-up funds
- **DISTRIBUTION & FREQUENCY:** The OTS provides grants for one to two years. There is no set maximum for grants
- **MATCH REQUIREMENTS:** Not required; however, contributions of other funds may make projects more competitive

More information can be found at: http://www.ots.ca.gov/Grants/

SCAQMD AB 2766 CLEAN AIR FUNDS SUBVENTION PROGRAM

South Coast Air Quality Management District (SCAQMD) receives approximately $20 million in motor vehicle fee annually. Since these funds are generally not fully spent every year, local governments also can carry over fund balances indefinitely, which allows flexibility in accumulating funding for future projects or secure additional grant matches.

- **ADMINISTERING AGENT:** SCAQMD
- **FUNDING SOURCE:** Surcharge on automobile registration
- **ELIGIBLE PROJECTS:** Projects are up to the discretion of the city and may be used for, but not limited to, the following: new bikeways, pedestrian and bicycle facilities, bike loan programs (i.e., for police, members of the community or the public), transportation demand management strategies, traffic management and signal coordination, and safety education and encouragement programs that promote bicycling and/or walking in lieu of driving
- **DISTRIBUTION & FREQUENCY:** 40% of the first $4 of each vehicle registration fee is distributed to local jurisdictions quarterly according to their prorated share of population for projects that reduce mobile source emissions. Since these funds are generally not fully spent every year, local governments also have the ability to carry over fund balances indefinitely, which allows flexibility in accumulating funding for future projects or secure additional grant matches
- **MATCH REQUIREMENTS:** N/A

For Los Angeles County, $12.6 million motor vehicle fees were collected FY 2014-2015 combined with $20.7 million rolled over from prior years. 74% of FY 2014-2015 funds were spent on projects, leaving a total of $8.7 million of funds to be rolled over in the future years. Applying conservative estimates, if Los Angeles County were to receive approximately $12.6 million annually in motor vehicle fees combined with the $8.7 million unspent and rolled over...
every year, $21.3 million would be available for Los Angeles County local jurisdictions. If Inglewood were to get its fair share based on population, it would receive 1.12% of this or approximately $238,560 annually.

More information can be found at:

**LAND AND WATER CONSERVATION FUND (LWCF)**

The State Side of the LWCF provides matching grants to States and local governments for the acquisition and development of public outdoor recreation areas and facilities.

- **ADMINISTERING AGENT:** California State Parks Department
- **FUNDING SOURCE:** States receive individual allocations of Land and Water Conservation Fund (LWCF) grant funds based upon a national formula, with state population being the most influential factor
- **ELIGIBLE PROJECTS:** Cities, counties, recreation and park districts, and any other entity that has the authority to develop or maintain a public park is eligible to apply. Chosen applications are then forwarded to the National Park Service for formal approval and obligation of federal grant monies. Bike paths and recreational trails are eligible uses of this money
- **DISTRIBUTION & FREQUENCY:** States initiate a statewide competition for the amount available annually
- **MATCH REQUIREMENTS:** One for one match is required, and federal funds cannot be used as a match, except Community Development Block Grants

More information can be found at:
https://www.nps.gov/subjects/lwcf/index.htm
LOCAL FUNDING

METRO CALL FOR PROJECTS (CFP)

The Metro Call for Projects provides discretionary federal, state, and local transportation funds to improve all modes of surface transportation. Metro also prepares the Los Angeles County Transportation Improvement Program (TIP). A key component of TIP is the Call for Projects (CFP) program, a competitive process that distributes discretionary capital transportation funds to regionally significant projects.

- **ADMINISTERING AGENT**: Los Angeles County Metropolitan Transportation Authority (Metro)
- **FUNDING SOURCE**: The TDA provides two funding sources: (1) State Transit Assistance (STA) is derived from a portion of the sales tax on gasoline and diesel fuel and (2) Local Transportation Fund (LTF) is derived from a ¼ cent of the general sales tax collected statewide. The LTF is a stable ongoing funding source for local transit operators throughout the state
- **ELIGIBLE PROJECTS**: There are eight categories in which projects are competitively ranked, including categories for bikeways and pedestrian improvements
- **DISTRIBUTION & FREQUENCY**: Caltrans distributes 40% of ATP funds to MPOs like Metro. Metro combines these funds with some regional Proposition C funds and allocates these funds through the CFP program. The CFP is a competitive process by which these discretionary funds are distributed to regionally significant projects every odd year
- **MATCH REQUIREMENTS**: N/A

Preliminary recommendations for the 2015 CFP were released, and Inglewood was recommended for two projects:

1. Manchester and La Cienega Geometric Improvements for signal and intersection modifications with a recommended amount of $13.3 million FY 2017-2021, and
2. Intelligent Transportation Systems Phase IV for signal upgrades and equipment modernization with a recommended amount of $25.2 million FY 2017-2021

Metro accepts CFP applications every odd year, the Metro CFP is currently on hold pending the completion and approval of the Metro Long Range Transportation Plan. For purposes of this Plan, we will still assume that Metro will be continuing to allocate funding through CFP. Based on the 2015 CFP recommendations, we will assume that $52 million will be awarded for pedestrian and bicycle projects every two years, or $26 million annually. If Inglewood is to receive its fair share of funding based on the County’s population, it would receive approximately 1.12% or $291,200 annually.

More information can be found at:
http://www.metro.net/projects/call_projects/
MEASURE M

Measure M, known as the “Los Angeles County Traffic Improvement Plan,” is a comprehensive plan that will improve transportation and mobility options for all in Los Angeles County.

- **ADMINISTERING AGENT:** Los Angeles County Metropolitan Transportation Authority (Metro)
- **FUNDING SOURCE:** This measure supplements existing revenues from Propositions A and C and Measure R, adds a 1/2-cent increase to the sales tax, which will increase to 1-cent when the existing Measure R tax expires in 2039
- **DISTRIBUTION & ELIGIBLE PROJECTS:** During the next 50 years, over $4 billion will be dedicated towards projects that will benefit people of all ages and abilities to walk and bike (especially our youth who often walk to and from school) and complete streets projects. This includes over $900 million for first-and-last mile improvements that improve access to transit. Metro has also reserved $857.5 million — about $20 million per year — for countywide walking and biking projects. This would provide a stable funding source for ongoing program costs currently subject to the uncertainty of grant funding, such as bicycle safety and education classes and public education campaigns
- **MATCH REQUIREMENTS:** N/A

Metro has projected that Inglewood, which falls under the South Bay subregion, will receive the following amounts in Table 11.2 below.

<table>
<thead>
<tr>
<th>Measure M Funding Source</th>
<th>Estimated Annual % for Inglewood ATP/SRTS</th>
<th>Estimated Annual $ for Inglewood ATP/SRTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Return</td>
<td>15%</td>
<td>$239,385</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>SOUTH BAY LOCAL RETURN</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure M Funding Source</td>
</tr>
<tr>
<td>Local Return</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>MULTI-YEAR SUBREGIONAL PROGRAMS - SOUTH BAY</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure M Funding Source</td>
</tr>
<tr>
<td>Transportation System and Mobility Improvements Program</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>MULTI-YEAR SUBREGIONAL PROGRAMS - ENTIRE COUNTY</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure M Funding Source</td>
</tr>
<tr>
<td>Active Transportation Program</td>
</tr>
</tbody>
</table>

Inglewood’s Total Annual Fair-share | $636,478
LOCAL RETURN FOR SOUTH BAY

A local return of 17% of the Measure M funding is distributed to cities to use at their discretion. They may choose to use a portion or all of that funding for bicycle and pedestrian-related projects. Considering these estimates, we may assume Inglewood should be able to receive approximately $1,595,900 in the first full year. If Inglewood is to spend 15% of their Measure M local return on active transportation and safe routes to school projects, this would amount of approximately $239,385 annually. As these monies are generated via sales tax, Metro projects that annual local return funding should increase every passing year. This local return funding can be leveraged with federal, state and local grants to obtain additional funding.

MULTI-YEAR SUBREGIONAL PROGRAMS FOR SOUTH BAY

Measure M funding would include approximately $1.63 billion that could be dedicated to improving walking and bicycling conditions in the South Bay. These potential funding sources could come from the Transportation Systems and Mobility Improvements Program, and the Subregional Equity Program.

Details on how these funding sources will be distributed are still being worked out as of writing this Plan. For purposes of this Plan, we may assume that if Inglewood is to receive its fair share in the South Bay region and will allocate 50% of their funds from the Transportation Systems and Mobility Improvements Program, this would amount to approximately $156,853 annually.

Projects would need to be consistent with Metro-adopted/approved policies, which include: Complete Streets Policy, Active Transportation Strategic Plan, Countywide Sustainability Planning Policy, First/Last Mile Strategic Plan, and Urban Greening Plan; or be listed in Metro’s Long Range Transportation Plan Mobility Matrix project list.

MULTI-YEAR SUBREGIONAL PROGRAMS FOR ENTIRE COUNTY - ACTIVE TRANSPORTATION PROGRAM

Measure M also provides $858 million worth of Metro Active Transportation Projects that all subregions, including the South Bay, are eligible to compete for. Details on how these funding sources will be distributed are still being worked out as of writing this Plan. However, for purposes of this Plan, we will assume that if Inglewood is to receive its fair share based the population of the entire county, it would receive approximately $240,240 annually for active transportation and safe routes to school projects.

More information can be found at:

PROPOSITION C

Proposition C sales tax, approved by voters in 1990, is an additional one-half of 1% tax on retail sales in the County. Proposition C funds critical transportation projects and programs related to rail expansion, street improvements, traffic reductions

- ADMINISTERING AGENT: Los Angeles County Metropolitan Transportation Authority (Metro)
- FUNDING SOURCE: Los Angeles County 1/2-cent sales tax

4. As per metro budget allocations, http://theplan.metro.net/projects-subregions/#northco
• **DISTRIBUTION:** Metro returns 20% of the Proposition C tax to the cities in the County for transportation purposes. The remaining balance is restricted to 40% for construction and operation of the bus transit and rail system; 5% to expand rail and bus security; 10% for commuter rail, construction of transit centers, park-and-ride lots and freeway bus stops; and 25% for transit-related improvements to freeways and state highways.

• **ELIGIBLE PROJECTS:** Capital and operating projects and programs that improve transit service and operations, reduce traffic congestion, improve air quality, and efficiently operate and improve the condition of streets and freeways utilized by transit. Bicycle, pedestrian and safe routes to school projects are eligible.

• **MATCH REQUIREMENTS:** N/A

Considering that 20% of funding is returned to cities, we may assume Inglewood should be able to receive approximately $1,877,507 annually. If Inglewood is to spend 10% of their Proposition C local return on active transportation and safe routes to school projects, this would amount of approximately $187,751 annually. As these monies are generated via sales tax, Metro projects that funding should increase every passing year.

More information can be found at: [https://www.metro.net/about/financebudget/taxes/](https://www.metro.net/about/financebudget/taxes/)

**MEASURE R LOCAL RETURN**

Approved in 2008 election, Measure R helps fund traffic relief, rail expansion and new transportation projects and programs, and accelerate projects already in the pipeline. The Measure R sales tax became effective July 1, 2009 and will remain in effect for 30 years.

• **ADMINISTERING AGENT:** Los Angeles County Metropolitan Transportation Authority (Metro)

• **FUNDING SOURCE:** Los Angeles County 1/2-cent sales tax

• **DISTRIBUTION:** Metro returns 15% of the Measure R funds are allocated for local city sponsored improvements. The remaining balance is restricted to 35% to new rail and bus rapid transit projects, 3% to Metrolink projects, 2% to Metro Rail system improvement projects, 20% to carpool lanes, highways and other highway related improvements, 5% to rail operations, and 20% to bus operations.

• **ELIGIBLE PROJECTS:** Capital and operating projects and programs that provide traffic relief, rail extensions, and reduce dependence of foreign oil. This includes: traffic signal synchronization, pothole reaps, fare management, and community traffic relief.

• **MATCH REQUIREMENTS:** N/A

15% of Measure R revenue returns to the cities according to population. Considering this estimate, we may assume Inglewood should be able to receive approximately $1,408,130 annually. If Inglewood is to spend 10% of their Measure R local return on active transportation projects, this would amount of approximately $140,813 annually. As these monies are generated via sales tax, Metro projects that funding should increase every passing year.

More information can be found at: [https://www.metro.net/about/financebudget/taxes/](https://www.metro.net/about/financebudget/taxes/)  
[https://www.metro.net/projects/measurer/](https://www.metro.net/projects/measurer/)

5. As per metro budget allocations, [http://theplan.metro.net/projects-subregions/#northco](http://theplan.metro.net/projects-subregions/#northco)
RESURFACING AND REPAVING

The City is able to add bicycle lanes and sharrows upon resurfacing and repaving of streets. While other lanes are restriped, the bike facilities can be painted as well.

NEW CONSTRUCTION

Future road widening and construction projects are one means of providing bike lanes. To ensure that roadway construction projects provide bike lanes where needed, it is important that an effective review process is in place to ensure that new roads meet the standards and guidelines presented in this master plan. Developers may also be required to dedicate land toward the widening of roadways in order to provide for enhanced bicycle mobility.

BENEFIT ASSESSMENT DISTRICTS

Bike paths, lanes, parking, and related facilities can be funded as part of a local benefit assessment district. However, defining the boundaries of the benefit district may be difficult since the bikeways will have citywide benefit.

ADOPT-A-PATH PROGRAM

Maintenance of bicycle paths and recreational trails could be paid for from private funds in exchange for recognition, such as signs along the path saying “Maintained by (name)”. In order for this funding source to be sustainable, a special account can be set up for donors to pay into.

GENERAL FUNDS

Cities and counties may spend general funds as they see fit. Any bicycle, pedestrian, or trails project can be funded completely through general funds, or general funds can be used as a local match for grant funds.
### SUMMARY OF PREDICTABLE FUNDING SOURCES

Table 11.3 below provides a summary of predictable funding sources that the corresponding funding amounts that Inglewood will be able to receive annually. Inglewood will be able to receive approximately $2.4 million annually. If this amount is divided evenly between the active transportation (citywide bicycle and pedestrian projects) and safe routes to school projects, Inglewood will be able to allocate $1.2 million annually to each project category.

Since Inglewood has prepared this Plan, it should be able to attract more than its fair share, so the estimates below provide a conservative assumption.

<table>
<thead>
<tr>
<th>FUNDING SOURCE</th>
<th>TOTAL AMOUNT FOR INGLEWOOD</th>
<th>ESTIMATED % FOR ATP/SRTS Projects</th>
<th>ESTIMATED $ FOR ATP/SRTS Projects</th>
<th>AMOUNT ALLOCATED FOR ATP PROJECTS (50%)</th>
<th>AMOUNT ALLOCATED FOR SRTS PROJECTS (50%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highway Safety Improvement Program (HSIP)</td>
<td>$383,000</td>
<td>15%</td>
<td>$57,450</td>
<td>$28,725</td>
<td>$28,725</td>
</tr>
<tr>
<td>Active Transportation Program (ATP)</td>
<td>$890,810</td>
<td>100%</td>
<td>$890,810</td>
<td>$445,405</td>
<td>$445,405</td>
</tr>
<tr>
<td>AB 2766 Subvention Program</td>
<td>$238,560</td>
<td>100%</td>
<td>$238,560</td>
<td>$119,280</td>
<td>$119,280</td>
</tr>
<tr>
<td>Metro Call for Projects</td>
<td>$291,200</td>
<td>100%</td>
<td>$291,200</td>
<td>$145,600</td>
<td>$145,600</td>
</tr>
<tr>
<td>Measure M Local Return</td>
<td>$1,595,900</td>
<td>15%</td>
<td>$239,385</td>
<td>$119,693</td>
<td>$119,693</td>
</tr>
<tr>
<td>Measure M Subregional Programs, Transportation System and Mobility Improvement Program</td>
<td>$313,706</td>
<td>50%</td>
<td>$156,853</td>
<td>$78,427</td>
<td>$78,427</td>
</tr>
<tr>
<td>Measure M Subregional Programs, Active Transportation Program for Entire County</td>
<td>$240,240</td>
<td>100%</td>
<td>$240,240</td>
<td>$120,120</td>
<td>$120,120</td>
</tr>
<tr>
<td>Proposition C</td>
<td>$1,877,507</td>
<td>10%</td>
<td>$187,751</td>
<td>$93,875</td>
<td>$93,875</td>
</tr>
<tr>
<td>Measure R Local Return</td>
<td>$1,408,130</td>
<td>10%</td>
<td>$140,813</td>
<td>$70,407</td>
<td>$70,407</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>$2,443,062</strong></td>
<td><strong>$1,221,531</strong></td>
<td><strong>$1,221,531</strong></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This Plan proposes an ambitious approach to making Inglewood a better community to walk and bicycle in. Implementation will require funding. As Chapter 11 describes the City has control over some funding but will have to apply for a significant portion of the funding to other agencies. This chapter recommends the priorities and displays planning-level costs of all of the proposed improvements. These per unit costs are shown in Table 12.1. These unit costs were used in previous chapters. More detailed cost estimates will come forth as the City engages in engineering design.
<table>
<thead>
<tr>
<th>IMPROVEMENT</th>
<th>UNIT</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continental crosswalks</td>
<td>Per lane</td>
<td>$150</td>
</tr>
<tr>
<td>Advance stop lines</td>
<td>Per lane</td>
<td>$120</td>
</tr>
<tr>
<td>Advance yield lines (sharks teeth)</td>
<td>Per lane</td>
<td>$96</td>
</tr>
<tr>
<td>Signs</td>
<td>Each</td>
<td>$500</td>
</tr>
<tr>
<td>Solid lane line</td>
<td>Linear foot</td>
<td>$3</td>
</tr>
<tr>
<td>SLOW SCHOOL XING pavement markings</td>
<td>Each</td>
<td>$500</td>
</tr>
<tr>
<td>Speed feedback signs solar powered</td>
<td>Each</td>
<td>$7,500</td>
</tr>
<tr>
<td>Reduced curb return and curb ramps</td>
<td>Each</td>
<td>$10,000</td>
</tr>
<tr>
<td>Proposed sidewalk</td>
<td>Square foot</td>
<td>$10</td>
</tr>
<tr>
<td>Tactile warning devices</td>
<td>Each</td>
<td>$500</td>
</tr>
<tr>
<td>Curb ramps</td>
<td>Each</td>
<td>$3,500</td>
</tr>
<tr>
<td>Extending existing median/median noses</td>
<td>Square foot</td>
<td>$20</td>
</tr>
<tr>
<td>Truncate median</td>
<td>Each</td>
<td>$500</td>
</tr>
<tr>
<td>Curb extension (bulb-out) with curb ramps</td>
<td>Each (per corner)</td>
<td>$15,000</td>
</tr>
<tr>
<td>Large curb extension with curb ramps</td>
<td>Each (per corner)</td>
<td>$20,000</td>
</tr>
<tr>
<td>Pedestrian crossing islands</td>
<td>Each</td>
<td>$7,500</td>
</tr>
<tr>
<td>Concrete islands (sq. ft)</td>
<td>Square foot</td>
<td>$20</td>
</tr>
<tr>
<td>Raised crosswalks</td>
<td>Each</td>
<td>$20,000</td>
</tr>
<tr>
<td>Pavement connecting street to the sidewalk</td>
<td>Square foot</td>
<td>$20</td>
</tr>
<tr>
<td>Curbing per linEachr foot</td>
<td>Linear foot</td>
<td>$30</td>
</tr>
<tr>
<td>Curbing with gutter per linEachr foot</td>
<td>Linear foot</td>
<td>$50</td>
</tr>
<tr>
<td>Bus bulbs</td>
<td>Each</td>
<td>$10,000</td>
</tr>
<tr>
<td>Protected left-turns (turn lane and signals exist)</td>
<td>Each</td>
<td>$3,000</td>
</tr>
<tr>
<td>Countdown signals</td>
<td>Each</td>
<td>$300</td>
</tr>
<tr>
<td>Leading pedestrian interval (signal exists)</td>
<td>Each</td>
<td>$300</td>
</tr>
<tr>
<td>Adjust signal timing</td>
<td>Each</td>
<td>$600</td>
</tr>
<tr>
<td>Provide separate signal phasing for left-turn movements</td>
<td>Each</td>
<td>$600</td>
</tr>
<tr>
<td>Add LED lights to stop signs with solar power</td>
<td>Each</td>
<td>$3,000</td>
</tr>
<tr>
<td>Rectangular rapid-flash bEachcons</td>
<td>Per set</td>
<td>$25,000</td>
</tr>
<tr>
<td>Pedestrian hybrid bEachcons</td>
<td>Each</td>
<td>$15,000</td>
</tr>
<tr>
<td>Mid-block pedestrian haLinear foot signals</td>
<td>Each</td>
<td>$125,000</td>
</tr>
<tr>
<td>Stripe out median</td>
<td>Each</td>
<td>$500</td>
</tr>
<tr>
<td>Move a bus stop (sign + pad only)</td>
<td>Each</td>
<td>$1,000</td>
</tr>
<tr>
<td>Road diet (restriping) for 3 to 4-lane streets</td>
<td>Linear foot</td>
<td>$45</td>
</tr>
<tr>
<td>Road diet (restriping) for 5 to 6-lane streets</td>
<td>Linear foot</td>
<td>$68</td>
</tr>
<tr>
<td>Road diet (restriping) for 6 to 7-lane streets</td>
<td>Linear foot</td>
<td>$80</td>
</tr>
<tr>
<td>Bike paths</td>
<td>Linear mile</td>
<td>$2,000,000</td>
</tr>
<tr>
<td>Bike lanes</td>
<td>Linear mile</td>
<td>$12</td>
</tr>
<tr>
<td>Colored bike lanes</td>
<td>Linear mile</td>
<td>$145,000</td>
</tr>
<tr>
<td>Buffered bike lanes</td>
<td>Linear mile</td>
<td>$85,000</td>
</tr>
<tr>
<td>Buffered colored bike lanes</td>
<td>Linear mile</td>
<td>$170,000</td>
</tr>
<tr>
<td>Double buffered colored bike lanes</td>
<td>Linear mile</td>
<td>$195,000</td>
</tr>
<tr>
<td>One-way protected bike lanes</td>
<td>Linear mile</td>
<td>$500,000</td>
</tr>
<tr>
<td>Two-way protected bike lanes</td>
<td>Linear mile</td>
<td>$500,000</td>
</tr>
<tr>
<td>Bike routes with sharrows</td>
<td>Linear mile</td>
<td>$30,000</td>
</tr>
<tr>
<td>Bike routes with greenback sharrows</td>
<td>Linear mile</td>
<td>$40,000</td>
</tr>
<tr>
<td>Bike boulevards</td>
<td>Linear mile</td>
<td>$50,000</td>
</tr>
<tr>
<td>Bicycle parking</td>
<td>Each (per bicycle)</td>
<td>$200</td>
</tr>
<tr>
<td>Skateboard/scooter parking</td>
<td>Each (per scooter)</td>
<td>$100</td>
</tr>
<tr>
<td>Speed cushions</td>
<td>Per set</td>
<td>$1,750</td>
</tr>
</tbody>
</table>
This Plan divides each of the project types into “short-term,” “medium-term,” and “long-term” priorities for bikeways, pedestrian improvements and the safe-routes-to-school plans. It shows each project along with the planning level cost estimate. The priorities for the bikeway and pedestrian projects were based considering the following:

- Priorities expressed by the public
- Destinations served
- Crash data
- Count data
- Transit stops and service
- Employment density
- Population density

Much of this data has been presented. Maps 12.1 and 12.2 show the employment and population density.
### TABLE 12.2 SHORT-TERM PRIORITIZED BIKEWAYS

<table>
<thead>
<tr>
<th>STREET</th>
<th>FROM</th>
<th>TO</th>
<th>PROPOSED LENGTH (MI.)</th>
<th>BIKEWAY TYPE</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florence Ave.</td>
<td>Manchester Blvd.</td>
<td>West Blvd.</td>
<td>2.6</td>
<td>Bike Path, Bike Route w/ Greenback Sharrows, Colored Bike Lanes, One-way Protected Bike Lanes</td>
<td>$1,786,000</td>
</tr>
<tr>
<td>Regent St.</td>
<td>West end of Regent St.</td>
<td>Prairie Ave.</td>
<td>1.3</td>
<td>Bike Boulevard</td>
<td>$65,000</td>
</tr>
<tr>
<td>Manchester Blvd.</td>
<td>Florence Ave. / Aviation Blvd.</td>
<td>Van Ness Ave.</td>
<td>1.9</td>
<td>Two-way Protected Bike Lanes, One-way Protected Bike Lanes</td>
<td>$701,500</td>
</tr>
<tr>
<td>Inglewood Ave.</td>
<td>Florence Ave.</td>
<td>South of Century Blvd.</td>
<td>1.4</td>
<td>Colored Bike Lanes, Bike Route w/ Greenback Sharrows, Double Buffered Colored Bike Lanes</td>
<td>$187,500</td>
</tr>
<tr>
<td>Grevillea Ave.</td>
<td>Manchester Blvd.</td>
<td>104th St.</td>
<td>1.5</td>
<td>Buffered Bike Lanes, Bike Lanes, Bike Route w/Sharrows</td>
<td>$66,000</td>
</tr>
<tr>
<td>Hillcrest Blvd.</td>
<td>Florence Ave.</td>
<td>Aviation Blvd.</td>
<td>2.3</td>
<td>Colored Bike Lanes, Bike Route w/ Greenback Sharrows, Buffered Bike Lanes, Bike Lanes</td>
<td>$171,250</td>
</tr>
<tr>
<td>La Brea Ave.</td>
<td>North city limit/ midway btwn 63rd St. to 64th St.</td>
<td>104th St.</td>
<td>2.9</td>
<td>Bike Route w/ Greenback Sharrows, Buffered Colored Bike Lanes, Colored Bike Lanes, Double Buffered Colored Bike Lanes</td>
<td>$773,000</td>
</tr>
<tr>
<td>Market St.</td>
<td>Florence Ave.</td>
<td>La Palma Dr.</td>
<td>0.6</td>
<td>Colored Bike Lanes, Bike Route w/ Greenback Sharrows</td>
<td>$69,000</td>
</tr>
<tr>
<td>Prairie Ave.</td>
<td>Florence Ave.</td>
<td>Imperial Hwy.</td>
<td>2.9</td>
<td>Buffered Colored Bike Lanes, Bike Route w/ Greenback Sharrows, One-way Protected Bike Lanes</td>
<td>$1,199,500</td>
</tr>
<tr>
<td>Crenshaw Blvd.</td>
<td>79th St.</td>
<td>119th St.</td>
<td>3.0</td>
<td>Bike Route w/ Greenback Sharrows, Colored Bike Lanes, One-way Protected Bike Lanes</td>
<td>$1,142,500</td>
</tr>
</tbody>
</table>

**TOTAL COST** $6,161,250

Tables 12.2, 12.3 and 12.4 display the bikeway priorities.
### TABLE 12.3 MEDIUM-TERM PRIORITIZED BIKEWAYS

<table>
<thead>
<tr>
<th>STREET</th>
<th>FROM</th>
<th>TO</th>
<th>PROPOSED LENGTH (MI.)</th>
<th>BIKEWAY TYPE</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fairview Blvd.</td>
<td>Western city limit/ La Cienega Blvd.</td>
<td>Hyde Park Blvd.</td>
<td>2.1</td>
<td>Buffered Bike Lanes, Bike Lanes, Bike Route w/ Sharrows</td>
<td>$136,500</td>
</tr>
<tr>
<td>Edward Vicent Jr.</td>
<td>Centinela Ave.</td>
<td>E. Pkwy</td>
<td>0.5</td>
<td>Bike Path</td>
<td>$1,000,000</td>
</tr>
<tr>
<td>Centinela Ave.</td>
<td>La Cienega Blvd.</td>
<td>Florence Ave.</td>
<td>1.5</td>
<td>Bike Route w/ Greenback Sharrows, Colored Bike Lanes, Double Buffered Colored Bike Lanes</td>
<td>$291,500</td>
</tr>
<tr>
<td>Hyde Park Blvd.</td>
<td>La Cienega Blvd.</td>
<td>West Blvd.</td>
<td>2.2</td>
<td>Bike Lanes, Bike Route w/Sharrows</td>
<td>$90,500</td>
</tr>
<tr>
<td>Queen St.</td>
<td>Fir Ave.</td>
<td>Grevillea Ave.</td>
<td>2.3</td>
<td>Bike Lanes</td>
<td>$149,500</td>
</tr>
<tr>
<td>Kelso St.</td>
<td>Ash Ave.</td>
<td>Prairie Ave.</td>
<td>1.5</td>
<td>Bike Boulevard</td>
<td>$72,500</td>
</tr>
<tr>
<td>Pincay Dr. /90th St.</td>
<td>Prairie Ave.</td>
<td>Van Ness Ave.</td>
<td>1.5</td>
<td>Buffered Bike Lanes, Bike Route w/ Sharrows</td>
<td>$100,000</td>
</tr>
<tr>
<td>Arbor Vitae St.</td>
<td>Portaial Ave.</td>
<td>Prairie Ave.</td>
<td>2.0</td>
<td>Bike Route w/ Greenback Sharrows, Bike Lanes</td>
<td>$115,000</td>
</tr>
<tr>
<td>Imperial Hwy.</td>
<td>Prairie Ave.</td>
<td>Van Ness Ave.</td>
<td>1.6</td>
<td>Buffered Colored Bike Lanes, Colored Bike Lanes, Bike Route w/ Greenback Sharrows, One-way Protected Bike Lanes</td>
<td>$461,000</td>
</tr>
<tr>
<td>Aviation Blvd.</td>
<td>Manchester Blvd.</td>
<td>Arbor Vitae St.</td>
<td>0.5</td>
<td>Bike Route w/ Greenback Sharrows</td>
<td>$20,000</td>
</tr>
<tr>
<td>La Cienega Blvd.</td>
<td>North City Limit (s/o Hyde Park Blvd./ Industrial Ave.)</td>
<td>Century Blvd.</td>
<td>1.6</td>
<td>Colored Bike Lanes, Bike Route w/ Greenback Sharrows, One-way Protected Bike Lanes</td>
<td>$612,000</td>
</tr>
<tr>
<td>Eucalyptus Ave.</td>
<td>64th St.</td>
<td>South of Century Blvd.</td>
<td>2.7</td>
<td>Bike Boulevard, Buffered Colored Bike Lanes</td>
<td>$165,000</td>
</tr>
<tr>
<td>Locust St.</td>
<td>Florence Ave.</td>
<td>Hillcrest Blvd.</td>
<td>0.5</td>
<td>Buffered Bike Lanes</td>
<td>$42,500</td>
</tr>
<tr>
<td>Overhill Dr.</td>
<td>North city limit/ midway between 63rd St. to 64th St.</td>
<td>Fairview Blvd.</td>
<td>0.1</td>
<td>Buffered Bike Lanes</td>
<td>$8,500</td>
</tr>
<tr>
<td>Yukon Ave.</td>
<td>Century Blvd.</td>
<td>119th Ct.</td>
<td>1.5</td>
<td>Bike Lanes, Buffered Bike Lanes, Bike Route w/Sharrows</td>
<td>$92,000</td>
</tr>
</tbody>
</table>

**TOTAL COST** $3,356,500
<table>
<thead>
<tr>
<th>STREET</th>
<th>FROM</th>
<th>TO</th>
<th>PROPOSED LENGTH (MI.)</th>
<th>BIKEWAY TYPE</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Tijera Blvd.</td>
<td>North City Limit (64th St.)</td>
<td>South City Limit (La Cienega Blvd.)</td>
<td>0.3</td>
<td>Bike Route w/ Sharrows</td>
<td>$ 9,000</td>
</tr>
<tr>
<td>Beach Ave.</td>
<td>North City Limit (64th St.)</td>
<td>Edward Vicent Jr. Park</td>
<td>1.9</td>
<td>Buffered Bike Lanes, Bike Lanes, Bike Route w/Sharrows</td>
<td>$ 79,500</td>
</tr>
<tr>
<td>68th St.</td>
<td>E. Pkwy</td>
<td>West Blvd.</td>
<td>0.3</td>
<td>Bike Route w/Sharrows</td>
<td>$ 9,000</td>
</tr>
<tr>
<td>76th St.</td>
<td>Crenshaw Blvd.</td>
<td>Van Ness Ave.</td>
<td>1.0</td>
<td>Bike Route w/Sharrows</td>
<td>$ 30,000</td>
</tr>
<tr>
<td>80th St./81st St.</td>
<td>West Blvd.</td>
<td>Van Ness Ave.</td>
<td>1.1</td>
<td>Bike Route w/Sharrows</td>
<td>$ 33,000</td>
</tr>
<tr>
<td>104th St.</td>
<td>West of Prairie Ave.</td>
<td>Van Ness Ave.</td>
<td>1.5</td>
<td>Bike Route w/Sharrows</td>
<td>$ 45,000</td>
</tr>
<tr>
<td>111th St./Thoreau St.</td>
<td>Prairie Ave.</td>
<td>Van Ness Ave.</td>
<td>1.5</td>
<td>Bike Route w/Sharrows</td>
<td>$ 43,500</td>
</tr>
<tr>
<td>Oak St.</td>
<td>Regent St.</td>
<td>98th St.</td>
<td>1.2</td>
<td>Bike Route w/Sharrows</td>
<td>$ 36,000</td>
</tr>
<tr>
<td>La Palma Dr.</td>
<td>Spruce Ave.</td>
<td>Prairie Ave.</td>
<td>0.5</td>
<td>Buffered Colored Bike Lanes, Bike Route w/ Greenback Sharrows</td>
<td>$ 46,000</td>
</tr>
<tr>
<td>8th Ave.</td>
<td>North City Limit/79th St.</td>
<td>Crenshaw Blvd.</td>
<td>0.4</td>
<td>Bike Route w/Sharrows</td>
<td>$ 12,000</td>
</tr>
<tr>
<td>5th Ave.</td>
<td>76th St.</td>
<td>101st St.</td>
<td>1.8</td>
<td>Bike Route w/Sharrows</td>
<td>$ 54,000</td>
</tr>
<tr>
<td>Van Ness Ave.</td>
<td>76th St.</td>
<td>Imperial Hwy.</td>
<td>2.8</td>
<td>Bike Route w/ Greenback Sharrows, Double Buffered Bike Lanes, Colored Bike Lanes</td>
<td>$ 300,000</td>
</tr>
<tr>
<td><strong>TOTAL COST</strong></td>
<td></td>
<td></td>
<td></td>
<td><strong>$697,000</strong></td>
<td></td>
</tr>
</tbody>
</table>
Tables 12.5, 12.6 and 12.7 above display the pedestrian project priorities by location.

**TABLE 12.5 SHORT-TERM PEDESTRIAN PROJECT PRIORITIES**

<table>
<thead>
<tr>
<th>PROJECT</th>
<th>LOCATION</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S. La Brea Ave. &amp; E. Queen St.</td>
<td>$ 75,480</td>
</tr>
<tr>
<td>2</td>
<td>S. La Brea Ave. &amp; E. Manchester Blvd.</td>
<td>$ 25,320</td>
</tr>
<tr>
<td>4</td>
<td>W. Century Blvd. &amp; 405 Freeway On/Off Ramps</td>
<td>$ 11,950</td>
</tr>
<tr>
<td>5</td>
<td>W. Century Blvd. &amp; S. Inglewood Ave.</td>
<td>$ 4,440</td>
</tr>
<tr>
<td>15</td>
<td>Crenshaw Blvd. &amp; W. 90th St./Pincay Dr.</td>
<td>$ 37,780</td>
</tr>
<tr>
<td>16</td>
<td>Crenshaw Blvd. &amp; W. Manchester Ave.</td>
<td>$ 47,040</td>
</tr>
<tr>
<td>18</td>
<td>S. Prairie Ave. &amp; W. 106th St.</td>
<td>$ 201,870</td>
</tr>
<tr>
<td>21</td>
<td>E. Florence Ave. &amp; N. Market St.</td>
<td>$ 27,200</td>
</tr>
<tr>
<td>22</td>
<td>E. Florence Ave. &amp; La Brea Ave.</td>
<td>$ 65,230</td>
</tr>
<tr>
<td>26</td>
<td>Centinela Ave. &amp; N. La Brea Ave.</td>
<td>$ 11,820</td>
</tr>
</tbody>
</table>

**TOTAL COST** $508,130

**TABLE 12.6 MEDIUM-TERM PEDESTRIAN PROJECT PRIORITIES**

<table>
<thead>
<tr>
<th>PROJECT</th>
<th>LOCATION</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>W. Century Blvd. &amp; S. Prairie Ave.</td>
<td>$ 19,070</td>
</tr>
<tr>
<td>11</td>
<td>W. Century Blvd. &amp; Village Dr./S. 11th St.</td>
<td>$ 31,590</td>
</tr>
<tr>
<td>12</td>
<td>W. Century Blvd. &amp; S. Crenshaw Blvd.</td>
<td>$ 19,970</td>
</tr>
<tr>
<td>17</td>
<td>W. Manchester Blvd. &amp; S. Prairie Ave.</td>
<td>$ 23,250</td>
</tr>
<tr>
<td>19</td>
<td>S. Yukon Ave. &amp; Imperial Hwy.</td>
<td>$ 3,900</td>
</tr>
<tr>
<td>20</td>
<td>S. Crenshaw Blvd. &amp; Imperial Hwy.</td>
<td>$ 12,160</td>
</tr>
<tr>
<td>23</td>
<td>E. Florence Ave. &amp; Centinela Ave.</td>
<td>$ 8,990</td>
</tr>
<tr>
<td>24</td>
<td>E. Florence Ave. &amp; N. Prairie Ave.</td>
<td>$ 32,990</td>
</tr>
<tr>
<td>25</td>
<td>Centinela Ave. &amp; E. Beach Ave.</td>
<td>$ 56,724</td>
</tr>
</tbody>
</table>

**TOTAL COST** $208,644

**TABLE 12.7 LONG-TERM PEDESTRIAN PROJECT PRIORITIES**

<table>
<thead>
<tr>
<th>PROJECT</th>
<th>LOCATION</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>S. Grevillea Ave. &amp; E. Arbor Vitae St.</td>
<td>$ 51,560</td>
</tr>
<tr>
<td>6</td>
<td>W. Century Blvd. &amp; S. Fir Ave./Firmona Ave.</td>
<td>$ 9,900</td>
</tr>
<tr>
<td>7</td>
<td>W. Century Blvd. &amp; S. Grevillea Ave.</td>
<td>$ 9,900</td>
</tr>
<tr>
<td>8</td>
<td>W. Century Blvd. &amp; S. La Brea Ave./Hawthorne Blvd.</td>
<td>$ 34,116</td>
</tr>
<tr>
<td>10</td>
<td>W. Century Blvd. &amp; Club Dr.</td>
<td>$ 9,320</td>
</tr>
<tr>
<td>13</td>
<td>Crenshaw Blvd. &amp; W. Arbor Vitae St. (south)</td>
<td>$ 43,910</td>
</tr>
<tr>
<td>14</td>
<td>Crenshaw Blvd. &amp; W. Arbor Vitae St. (north)</td>
<td>$ 35,330</td>
</tr>
<tr>
<td>27</td>
<td>N. La Brea Ave. &amp; Fairview Blvd.</td>
<td>$ 3,600</td>
</tr>
</tbody>
</table>

**TOTAL COST** $197,636
Tables 12.8, 12.9 and 12.10 display the Safe-Routes-to-School priorities by school. The priorities for the Safe-Routes-to-School projects was based on the number of crashes over a five-year period.

**TABLE 12.8 SHORT-TERM PRIORITY SAFE ROUTES TO SCHOOLS PROGRAM**

<table>
<thead>
<tr>
<th>SCHOOL</th>
<th># PED/BICYCLE CRASHES 2009-2013</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>City Honors College Preparatory Academy &amp; Crozier Middle School</td>
<td>43</td>
<td>$262,792</td>
</tr>
<tr>
<td>La Tijera K-8 Academy of Excellence Charter School</td>
<td>41</td>
<td>$527,068</td>
</tr>
<tr>
<td>Bennett-Kew Elementary School</td>
<td>38</td>
<td>$470,232</td>
</tr>
<tr>
<td>Claude Hudnall Elementary School</td>
<td>27</td>
<td>$618,364</td>
</tr>
<tr>
<td>Frank D. Parent K-8 School</td>
<td>27</td>
<td>$171,886</td>
</tr>
<tr>
<td>Inglewood High School</td>
<td>27</td>
<td>$274,490</td>
</tr>
<tr>
<td><strong>TOTAL COST</strong></td>
<td></td>
<td><strong>$2,324,832</strong></td>
</tr>
</tbody>
</table>

**TABLE 12.9 MEDIUM-TERM PRIORITY SAFE ROUTES TO SCHOOLS PROGRAM**

<table>
<thead>
<tr>
<th>SCHOOL</th>
<th># PED/BICYCLE CRASHES 2009-2013</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beulah Payne Elementary School</td>
<td>26</td>
<td>$184,792</td>
</tr>
<tr>
<td>William H. Kelso Elementary School</td>
<td>26</td>
<td>$648,732</td>
</tr>
<tr>
<td>Worthington Elementary School</td>
<td>26</td>
<td>$470,720</td>
</tr>
<tr>
<td>Highland Elementary School</td>
<td>22</td>
<td>$528,580</td>
</tr>
<tr>
<td>Oak Street Elementary School</td>
<td>22</td>
<td>$308,672</td>
</tr>
<tr>
<td><strong>TOTAL COST</strong></td>
<td></td>
<td><strong>$2,141,496</strong></td>
</tr>
</tbody>
</table>

**TABLE 12.10 LONG-TERM PRIORITY SAFE ROUTES TO SCHOOLS PROGRAM**

<table>
<thead>
<tr>
<th>SCHOOL</th>
<th># PED/BICYCLE CRASHES 2009-2013</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albert F. Monroe Magnet Middle School &amp; Clyde Woodworth Elementary School</td>
<td>19</td>
<td>$522,494</td>
</tr>
<tr>
<td>Morningside High School</td>
<td>19</td>
<td>$272,910</td>
</tr>
<tr>
<td>Warren Lane Elementary School</td>
<td>15</td>
<td>$368,250</td>
</tr>
<tr>
<td>Centinela Elementary School</td>
<td>10</td>
<td>$1,060,746</td>
</tr>
<tr>
<td><strong>TOTAL COST</strong></td>
<td></td>
<td><strong>$2,224,400</strong></td>
</tr>
</tbody>
</table>
The City may want to re-prioritize any of these projects at any time. For example, the City may have a nearby street project where it makes sense to include another project from any priority list on the same street. Or, the City may want to do the painting and striping for all locations, then do curb extension construction for all locations. These tables just provide a basis to decide what to work on next.

In addition to these capital costs, this Plan recommends that the City have an ongoing program like those described in Chapter 10. The City may want to hire a part-time person whose duty it is to work on those programs. This Plan recommends an annual budget of $100,000 for these programs.

Table 12.11 shows all the prioritized costs for each program.

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>SHORT-TERM CAPITAL COSTS</th>
<th>MEDIUM-TERM CAPITAL COSTS</th>
<th>LONG-TERM CAPITAL COSTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bikeways</td>
<td>$6,161,250</td>
<td>$3,356,500</td>
<td>$697,000</td>
</tr>
<tr>
<td>Pedestrian Projects</td>
<td>$508,130</td>
<td>$208,644</td>
<td>$197,636</td>
</tr>
<tr>
<td>Safe Routes to School Projects</td>
<td>$2,324,832</td>
<td>$2,141,496</td>
<td>$2,224,400</td>
</tr>
<tr>
<td>TOTAL COST</td>
<td>$8,994,212</td>
<td>$5,706,640</td>
<td>$3,119,036</td>
</tr>
</tbody>
</table>

Based on the amounts of expected funding as determined in Chapter 11, the City will have approximately $2,443,062 available for all these projects annually. If it splits these funds evenly between bicycle/pedestrian and safe-routes-to-school projects each will have $1,221,531 per year for each. Under these assumptions, it will take approximately 5.4 years to implement all of the short-term priority bikeway/pedestrian projects, 2.9 years to complete all of the medium-term priority bikeway/pedestrian projects and just 0.7 years to complete all of the long-term priority bikeway/pedestrian projects. To complete the safe-routes-to-school short-term priority projects will take approximately 1.9 years, 1.7 years for the medium-term projects, and 1.8 years for the long-term projects. These assume that the City budgets $100,000 for programs each year as described in Chapter 10. If more funding sources become available this schedule could speed up.

The City will need to conduct ongoing maintenance of the facilities and programs. Maintenance will include normal items such as street sweeping, painting, striping, sign replacement, etc.
This Plan recommends that the City set up a monitoring program that measures its success with metrics such as, but not limited to:

- Number of bicyclists along bikeways and other city streets
- Number of pedestrians at key locations
- Number of school students walking or bicycling to school
- Number of people walking or bicycling to board a bus or train
- Number of bicycle and pedestrian-involved crashes and their severity
- Vehicle speeds
- Number of vehicles
- User satisfaction and comfort

In order to carry out this monitoring the City can use the following at its discretion:

- Bicycle counts
- Pedestrian counts
- Crash data
- Vehicle counts
- Speed surveys
- School surveys
- Questionnaire surveys of the general public
- Questionnaire surveys of transit users

As Inglewood implements this Plan the numbers of bicyclists and pedestrians should increase, the number of transit users should increase, the number of crashes should decrease and become less severe, the number of vehicles should decline, vehicles should travel slower and people should be happier with the improvements. This will help Inglewood to meet the goals of this plan to become a safer, healthier, more sustainable and more livable community.
EQUITY ANALYSIS

Cities that are environmentally or income-disadvantaged receive special consideration for Active Transportation Program funding. Table 12.12 below shows that many of Inglewood’s Census tracts are considered disadvantaged by the CalEnvironScreen method.

### TABLE 12.12 EQUITY ANALYSIS

<table>
<thead>
<tr>
<th>CENSUS TRACT</th>
<th>CALENVIROSCREEN 3.0 SCORE</th>
<th>CALENVIROSCREEN 3.0 PERCENTILE RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>6037601600</td>
<td>65.05</td>
<td>95-100%</td>
</tr>
<tr>
<td>6037601401</td>
<td>64.99</td>
<td>95-100%</td>
</tr>
<tr>
<td>6037601502</td>
<td>63.03</td>
<td>95-100%</td>
</tr>
<tr>
<td>6037601700</td>
<td>54.8</td>
<td>90-95%</td>
</tr>
<tr>
<td>6037600502</td>
<td>52.62</td>
<td>90-95%</td>
</tr>
<tr>
<td>6037601402</td>
<td>50.57</td>
<td>85-90%</td>
</tr>
<tr>
<td>6037601211</td>
<td>50.32</td>
<td>85-90%</td>
</tr>
<tr>
<td>6037601302</td>
<td>47.6</td>
<td>85-90%</td>
</tr>
<tr>
<td>6037602003</td>
<td>46.05</td>
<td>80-85%</td>
</tr>
<tr>
<td>6037601002</td>
<td>45.67</td>
<td>80-85%</td>
</tr>
<tr>
<td>6037601900</td>
<td>45.45</td>
<td>80-85%</td>
</tr>
<tr>
<td>6037602004</td>
<td>45.18</td>
<td>80-85%</td>
</tr>
<tr>
<td>6037600902</td>
<td>45.15</td>
<td>80-85%</td>
</tr>
<tr>
<td>6037601100</td>
<td>45.06</td>
<td>80-85%</td>
</tr>
<tr>
<td>6037601801</td>
<td>44.96</td>
<td>80-85%</td>
</tr>
<tr>
<td>6037601802</td>
<td>44.23</td>
<td>80-85%</td>
</tr>
<tr>
<td>6037601303</td>
<td>42.74</td>
<td>75-80%</td>
</tr>
<tr>
<td>6037601202</td>
<td>40.54</td>
<td>75-80%</td>
</tr>
<tr>
<td>6037601001</td>
<td>39.7</td>
<td>75-80%</td>
</tr>
</tbody>
</table>
APPENDIX

INGLEWOOD DESIGN GUIDELINES
The following guidelines present the recommended minimum design standards and other recommended ancillary support items for:

<table>
<thead>
<tr>
<th>BIKE PATHS</th>
<th>SIGNING AND MARKINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I Bike Paths</td>
<td>Colored Pavement Treatments</td>
</tr>
<tr>
<td>BIKE LANES</td>
<td>Bike Route Wayfinding Signage</td>
</tr>
<tr>
<td>Class II Bike Lanes</td>
<td></td>
</tr>
<tr>
<td>Colored Bike Lanes</td>
<td></td>
</tr>
<tr>
<td>Buffered Bike Lanes</td>
<td></td>
</tr>
<tr>
<td>Double Buffered Bike Lanes</td>
<td></td>
</tr>
<tr>
<td>BIKE ROUTES</td>
<td>INTERSECTIONS</td>
</tr>
<tr>
<td>Class III bike routes</td>
<td>Bikeway Markings at Intersections</td>
</tr>
<tr>
<td>Sharrows</td>
<td>Bike Boxes</td>
</tr>
<tr>
<td>Greenback Sharrows</td>
<td>Two-Stage Turn Queue Boxes</td>
</tr>
<tr>
<td>PROTECTED BIKE LANES</td>
<td>Protected Intersections</td>
</tr>
<tr>
<td>Class IV Protected Bike Lanes</td>
<td></td>
</tr>
<tr>
<td>One-way Protected Bike Lanes</td>
<td></td>
</tr>
<tr>
<td>Two-way Protected Bike Lanes</td>
<td></td>
</tr>
<tr>
<td>BIKEWAY REFERENCE MATRIX</td>
<td>BICYCLE SIGNALS</td>
</tr>
<tr>
<td></td>
<td>Bicycle Signal Heads</td>
</tr>
<tr>
<td></td>
<td>Bicycle Signal Detection</td>
</tr>
<tr>
<td></td>
<td>Bicycle Countdowns</td>
</tr>
<tr>
<td></td>
<td>Leading Bicycle Intervals</td>
</tr>
<tr>
<td></td>
<td>BICYCLE PARKING</td>
</tr>
<tr>
<td></td>
<td>LEGAL STATUS</td>
</tr>
<tr>
<td></td>
<td>RECOMMENDED BIKEWAY</td>
</tr>
<tr>
<td></td>
<td>CROSS SECTIONS</td>
</tr>
</tbody>
</table>
DESIGN STANDARDS

Where possible, it may be desirable to exceed the minimum standards. These guidelines cover basic concepts. The Caltrans Highway Design Manual (HDM) Chapter 1000 contains more detailed standards and guidance and should be followed. The City may also reference the American Association of State Highway and Transportation Officials (AASHTO) Guide for the Development of Bicycle Facilities (2012), and the National Association of City Transportation Official (NACTO) Urban Bikeway Design Guide (2014) where the HDM is silent.

This section also references the uniform standards and specifications for traffic control devices under the 2014 California Manual on Uniform Traffic Control Devices (CA MUTCD).

EXPERIMENTAL DEVICES

As of the writing of this manual, a number of recommended devices are considered experimental. They have not yet been fully adopted by the FHWA MUTCD or CA MUTCD.

These devices appear to be promising improvements in bicycle and pedestrian access and safety as they have been widely used in Europe and experimented with in the US. Any jurisdiction wishing to use these treatments should follow the appropriate experimental procedures. Colored bike lanes have been given blanket interim approval for use in California. For these, the City only needs to notify Caltrans that it will use these. Bike boxes and colored treatments of shared lane markings are approved for experimentation by the Federal Highway Administration (FHWA). To conduct these experiments, the City would need to follow the guidelines set forth by the FHWA here: https://mutcd.fhwa.dot.gov/condexper.htm and to the California Traffic Control Device Committee following their guidelines set forth in Section 1A.10 of the CA MUTCD.
TYPICAL APPLICATIONS

- **Facility Design**
  Class I bike paths should generally be designed as protected facilities away from parallel streets. They are commonly planned along rights-of-way such as waterways, utility corridors, railroads, and the like that offer continuous protected riding opportunities.

- **Adherence to Design Guidelines**
  All Class I bike paths should conform to the design guidelines set forth by Caltrans. Sidewalk paths and unpaved facilities that are not funded with federal transportation dollars and that are not designated as Class I bike paths do not need to be designed to Caltrans standards.

- **Where Possible, Separate from Sidewalks**
  Both AASHTO and Caltrans recommend against using most sidewalks for bike paths. This is due to conflicts with driveways and intersections. Where sidewalks are used as bike paths, they should be placed along routes with few driveways and intersections, be properly separated from the roadway, not contain obstructions (bus stops, signs, trees, trash receptacles, etc.) and have carefully designed intersection crossings.

- **Recommended Widths**
  Bike paths should have a minimum of 8' of...
pavement, with at least 2’ of unpaved shoulders for pedestrians/runners, or a separate pathway for pedestrians/runners where feasible. A pavement width of 12’ is preferred.

• **Roadway Crossings Design**
  Class I bike path roadway crossings should be carefully engineered to accommodate safe and visible crossing for users. The design needs to consider the width of the roadway, whether it has a median, and the roadway’s average daily and peak-hour traffic volumes. Crossings of low-volume streets may require simple stop signs. Crossings of streets with Average Daily Traffic (ADT) of over 15,000 vehicles per hour should be assessed for signalized crossing, flashing LED beacons, crossing islands, or other devices. Roundabouts may be a desirable treatment for a bike path intersecting with roadways where the bike path is not next to a parallel street.

• **Lighting**
  Lighting should be provided where bicyclists will likely use the bike path in the late evening, such as along commuter routes.

• **Physical Barriers & Signs**
  Barriers at path entrances to prevent motorized vehicles from entering, such as obstacle posts and gates, can obstruct bicyclists and should be avoided when possible. Typically, barriers should not be considered until after it has been determined that other measures to prevent motor vehicles from entering have failed, and where the safety and other issues posed by unauthorized vehicles are more serious than the safety and access issues posed to path users. Signs and other design solutions are preferred.

• **Maintenance & Emergency Vehicle Access**
  Bike path construction should take into account vertical requirements and the impacts of maintenance and emergency vehicles on shoulders.
TYPICAL APPLICATIONS

• Facility Design
Class II bike lanes are a portion of the roadway designated for preferential use by bicyclists; they have been designated by striping, signage, and pavement markings.

Bike lanes run adjacent to the travel lanes and flows in the same direction as motor vehicle traffic. Bike lanes are typically on the right side of the street, between the adjacent travel lane and curb, road edge, or parking lane.

• Adherence to Design Guidelines
The following guidelines should be used when designing Class II bikeway facilities. The Caltrans HDM Chapter 1000, AASHTO, the CA MUTCD, and the Caltrans Traffic Manual provide these guidelines.

• Recommended Widths
Class II Bike Lane facilities should conform to the minimum design standard of 5’ in width in the direction of vehicle travel adjacent to the curb lane. Where space is available, a width of 6’ to 8’ is preferred, especially on busy arterial streets, on grades, and adjacent to parallel parking.

Under certain circumstances, bike lanes may be 4’ in width. Situations where this is permitted include:

» Bike lanes located between through
traffic lanes and right turn pockets at intersection approaches

» Where there is no parking, the gutter pan is no more than 12” wide, and the pavement is smooth and flush with the gutter pan

» Where there is no curb and the pavement is smooth to the edge

• Signs
  “Bike Lane” (R81) and “Bike Route” (D11-1) Signage shall be posted after every significant intersection along the route of the bike lane facility. “Begin” and “End” plaques (R81A or R81B) should accompany the “Bike Lane” sign when appropriate. The route number shown on the Bike Route Identification sign should correspond to the latest City Bicycle Routes and Facilities Map. The Bike Route Identification sign can also be used in conjunction with an arrow plaque (M6 series) in advance of another approaching bike lane or route to direct bicyclists. If a bike lane exists where parking is prohibited, “no parking” signage may accompany bike lane signage.

• Striping
  Bike lanes should be striped with a 6” wide solid white stripe (CA MUTCD Detail 39) and should be dashed (Detail 39A) at an intersection approach. The length of Detail 39A shall be 100’ when the block is short (less than 400’) and 200’ where the block is longer or vehicle speeds are high (greater than 35 mph). The dashed bike lane stripe allows for use of the bike lane as a right-turn pocket for motor vehicles.

  Bike lanes with two stripes are more visible than those with one and are preferred. The second inside stripe (4” solid white) would differentiate the bike lane from the parking lane where appropriate.

• Markings
  At the beginning of each and end of each block and at approximately 150’ to 250’ intervals, pavement stencils of a bicycle and arrow shall be used to show the direction of travel. The stencils
at the end of the block should be placed just before the dashed bike lane stripe (Detail 39B).

• **Intersection Treatments**
  Where space permits, intersection treatments should include bike lane ‘pockets’.

  At signalized intersections, loops or other means of bicycle detection should be installed near the limit line in the bike lane and all vehicle lanes that have detection. Signal timing and phasing should be set to accommodate bicycle acceleration speeds. Painted bicycle detector stencils may be placed at detection zones located within the bike lane to notify bicyclists where they can actuate the signal.

  Traffic signals can be timed and coordinated for cyclists (where appropriate).

• **Transitions from Class II Bike Lanes to Class III Bike Routes**
  Where bike lanes terminate, they typically should transition to a Class III bike route when possible. Cyclists should be notified through a sign that includes the Bike Lane sign (R81) with End plaque (R81B). Shared lane markings (sharrows) should be placed in the transition zone to help guide cyclists to the proper place to ride in the lane. Class III bike route time, distance and destination signs should help provide continuity.

• **Roadway Conditions**
  When bike lanes are to be implemented on existing roadway surfaces, it is important to identify and remediate any longitudinal cracking greater than ½” wide, vertical deformations such as utility covers that are not flush, and other conditions that may affect rideability.
COLORED BIKE LANEs

Green bicycle lanes increase visibility for cyclists. The Federal Highway Administration (FHWA) and the California Traffic Control Device Committee have approved green bike lanes on an interim basis per CA MUTCD IA-14; Interim Approval for Optional Use of Green Colored Pavement for Bike Lanes. The State of California has requested and received approval from the FHWA to implement CA MUTCD IA-14 statewide. Consequently, the City may implement green bike lanes without need to notify the State or FHWA, provided the CA MUTCD guidelines are followed.

Green bicycle lanes are sometimes used as “conflict zone” treatments. They are short lanes that are used at right-turn pockets or driveways to alert right-turning motorists of the bike lane. Green bicycle lanes can also be used as a continuous treatment spanning the extended length of a bike lane corridor.

BUFFERED BIKE LANEs

Buffered bike lanes provide a painted divider between the bike lane and the adjacent travel lane. This additional space can improve the comfort of cyclists, as they don’t have to ride as close to motor vehicles. Buffered bike lanes can also be used to narrow travel lanes, which slows traffic. Buffered bike lanes are most appropriate on wide, busy streets. They can be used on streets where physically separating the bike lanes with protected bike lanes is undesirable for cost, operational, or maintenance reasons.

DOUBLE BUFFERED BIKE LANEs

Double buffered bike lanes provide a painted divider on both the travel lane and the parking lane. This additional buffer between parked cars and bike lanes directs cyclists to ride outside of the door zone of the parked cars. These are most important with significant parking turnover.
TYPICAL APPLICATIONS

• Facility Design
Class III bike routes are typically simple signed routes along street corridors, usually local streets and collectors. With proper route signage, design, and maintenance, bike routes can be effective in guiding bicyclists along a route suited for bicycling that does not have enough roadway space for a dedicated Class II bike lane. Class III bike routes can be designed in a manner that encourages bicycle usage, convenience, and safety.

Bike routes can become more useful when coupled with the following techniques:

» Route, directional, and distance signage
» Wide curb lanes
» Shared lane marking stencils painted in the traffic lane along the appropriate path of where a bicyclist would ride in the lane
» Accelerated pavement maintenance schedules
» Traffic signals timed and coordinated for cyclists (where appropriate)
» At signalized intersections, loop detectors or other means of bicycle detection should be installed near the limit lane in all vehicle lanes that have vehicle detection.
» Traffic signals can be timed and coordinated for cyclists (where
appropriate). Signal timing and phasing should be set to accommodate bicycle acceleration speeds.

» Traffic calming measures

» Remediation of longitudinal cracking greater than ½” wide, utility covers that are not flush, vertical deformations, and other conditions that may affect rideability.

• Signs

“Bike Route” (D11-1) signage should be posted after every intersection along the route to inform bicyclists that the bikeway facility continues and alert motorists to the presence of bicyclists. “Begin” and “End” plaques (M4-14 and M4-6) should accompany the Bike Route sign when appropriate. The route number shown on the Bike Route Identification sign should correspond to the latest City Bicycle Routes and Facilities Map. The Bike Route sign can also be used in conjunction with an arrow plaque (M6 series) in advance of another approaching bike route or lane to direct bicyclists. If a bike route exists where parking is prohibited, “no parking” signage may accompany bike lane signage.

SHARROWS

TYPICAL APPLICATIONS

• Facility Design

Sharrow stencils are recommended as a way to enhance the visibility and safety of Class III bike routes. Sharrows (officially known as “shared lane markings”) indicate to cyclists the proper position to ride within the travel lane and assist with wayfinding. They also alert motorists that the travel lane is to be shared with bicyclists.

• Adherence to Design Guidelines

CA MUTCD, Section 9C.103(CA) Shared Roadway Bicycle Markings states: “The shared roadway bicycle marking shall only be used on a roadway (Class III Bikeway (Bike Route) or Shared Roadway (No Bikeway Designation)).”

• Placement & Spacing of Sharrows

When used on streets with on-street parking, sharrows are to be placed such that the centers of the markings are a minimum of 11’ from the curb face or edge of paved shoulder on streets with on-street parallel parking. Where space is
available, 12’ or more from the curb is preferred. On streets without on-street parking that have an outside travel lane that is less than 14’ wide, the centers of the sharrows should be at least 4’ from the face of the curb.

On two-lane roadways, these minimum distances allow vehicles to pass bicyclists on the left within the same lane without encroaching into the opposite lane of traffic. (On multi-lane roadways, motorists must change lanes to pass a cyclist.)

On streets with on-street parking, installing sharrows more than 11’ from the curb will also move the bicyclist farther from the “door zone” (approximately 4’).

Sharrows should be placed in straight lines to encourage the bicyclist to travel in a straight line. This often means the sharrows are in the center of the lane, greater than the minimum guideline of 4’ or 11’ from the curb. Sharrows should always be placed outside the “door zone” where on-street parking is provided.

**GREENBACK SHARROWS**

**TYPICAL APPLICATIONS**

- **Facility Design**
  Some cities use greenback sharrows, or sharrows with a square of green paint to make them more visible.

- **Adherence to Design Guidelines**
  The FHWA currently permits experimentation of greenback sharrows. Cities should use the same design guidelines are regular shared lane markings. They are likely to be more effective where spaced close together.
TYPICAL APPLICATIONS

- **Facility Design**
  Protected bike lanes, sometimes called “separated bike lanes” or “cycle tracks” provide a physical barrier between the bike lane and the adjacent travel lanes, parking lanes, and sidewalks. They are most effective in attracting users who are concerned about conflicts with motorized traffic. Protected bike lanes may be one-way or two-way. They may also be at the level of the street, at the level of the sidewalk, or between the two. If they are at the sidewalk level, different pavement colors and textures separate the bike lanes from the sidewalks. If at the street level, they can be separated from the travel lanes by physical barriers. If there is on-street parking they are placed between the sidewalk and parking.

- **Adherence to Design Guidelines**
  The design guidelines issued by Caltrans for Class IV separated bike lanes are compliant with HDM Chapter 1000 and the CA MUTCD.

- **Types of Protection**
  The methods of vertical protection can be implemented with a variety of design approaches. Protected bike lanes can be protected from motor traffic by raised medians, concrete curbs, landscaping, on-street parking, bollards, flexible delineator posts, or by a change in elevation between the bike lane and the travel lane.

- **Intersection Design**
  Protected bike lanes tend to work most effectively where there are few uncontrolled crossing points with unexpected traffic conflicts. These concerns include treatment at intersections, uncontrolled midblock driveways and crossings, and difficulty accessing or exiting the facility at midblock locations. If the protected bike lanes are parking protected, parking should be prohibited near the intersection to improve visibility. The recommended no-parking zone is 30’ from each side of the intersection crossing. Two-stage turn queue boxes should be provided to assist in making turns from the protected bike lane facility. A dedicated bicycle signal phase can prevent conflicts at intersections between turning vehicles and bicyclists.

- **Markings**
  Pavement stencils of a bicycle and arrow markings shall be placed at the beginning of a protected bike lane facility and at periodic
intervals along the facility to define the bike lane direction and designate that portion of the street for preferential use by bicyclists.

- **Maintenance**
  The protected bike lane area to be used by bicycles should be designed with adequate width for street sweeping to ensure that debris will not accumulate.

- **Adherence to ADA Considerations**
  When providing accessible parking spaces along protected bike lanes, the following design considerations are recommended to accommodate persons with disabilities in the design of one-way and two-way protected bike lanes:

  - widened buffer space to accommodate a side mounted vehicle ramp or lift
  - mid-block curb ramps and tactile surfaces may be provided near accessible parking spaces
  - roadway cross-slopes that do not exceed a 2% grade
  - if bollards are used, to consider placement of bollards that avoid impeding access by disabled users

### ONE-WAY PROTECTED BIKE LANES

Parking-Protected Bike Lanes with Flexible Delineator Posts

One-way protected bike lanes are bikeways that are at street level and use a variety of methods for physical protection from motor traffic. They are generally placed on both sides of the street.

- **Recommended Widths**
  The minimum recommended width for a one-way protected bike lane is 5’, although 6’ is preferred. Areas with high bicyclist volumes or uphill sections, the recommended minimum width is 7’ to allow for bicyclists passing each other.
  At least 3’ is recommended for a parking buffer to allow for passenger loading and to prevent “doorin” collisions. Without a parking buffer, 2’ is preferred.
Two-way protected bike lanes are bikeways that are physically protected bikeways that allow bicycle movement in both directions on one side of the street. Two-way protected bike lanes share some of the same design characteristics as one-way protected bike lanes but may require additional design considerations at driveway and side-street crossings.

**Recommended Widths**

The preferred width for a two-way protected bike lane is 12’. Minimum width in constrained locations is 8’.

At least 3’ is recommended for a parking buffer to allow for passenger loading and to prevent “dooring” collisions. Without a parking buffer, 2’ is preferred.
<table>
<thead>
<tr>
<th>BIKE PATHS</th>
<th>ADVANTAGES</th>
<th>DISADVANTAGES</th>
</tr>
</thead>
</table>
| Width: 8’ min., 12’ preferred | • Provide a protected facility that serves recreational and utilitarian purposes  
• Attract new bicyclists  
• Increase community physical activity | • Cost more for construction and maintenance |

<table>
<thead>
<tr>
<th>BIKE LANES</th>
<th>ADVANTAGES</th>
<th>DISADVANTAGES</th>
</tr>
</thead>
</table>
| Width: 5’ min., 6’ preferred | • Dedicate roadway for bicyclists  
• Increase cyclist’s comfort through visual separation | • Can preclude other possible uses based on space requirements  
• Provide no buffer between bicyclists and vehicular traffic  
• May not appeal to the majority of the non-cycling population |

<table>
<thead>
<tr>
<th>COLORED BIKE LANES</th>
<th>ADVANTAGES</th>
<th>DISADVANTAGES</th>
</tr>
</thead>
</table>
| Width: 5’ min., 6’ preferred | • Increase the visibility of bicyclists  
• When used in conflict zones, raises motorists and cyclists awareness and mitigates conflicts  
• Can slow traffic by making the street appear | • Cost more for colored pavement  
• Require more maintenance |

<table>
<thead>
<tr>
<th>BUFFERED BIKE LANES</th>
<th>ADVANTAGES</th>
<th>DISADVANTAGES</th>
</tr>
</thead>
</table>
| Width: 2’ min. buffer, 3’ preferred buffer | • Provide a buffer between bicyclists and vehicular traffic  
• Provide space for bicyclists to pass without encroaching into the travel lane  
• Will likely attract new bicyclists with lower-stress facility | • Require more space for the buffer |
## BIKEWAY REFERENCE MATRIX

<table>
<thead>
<tr>
<th>BIKEWAY TYPE</th>
<th>DESCRIPTION</th>
<th>ADVANTAGES</th>
<th>DISADVANTAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>DOUBLE BUFFERED BIKE</strong>&lt;br&gt;Width: 2’ min. buffer, 3’ preferred buffer</td>
<td>• Provide bicyclists with a buffer to avoid the “dooring zone” of the parking lane and a buffer from the travel lane&lt;br&gt;• Will likely attract new bicyclists</td>
<td>• Require more space than basic bike lanes&lt;br&gt;• Require more maintenance for the buffer striping</td>
<td></td>
</tr>
<tr>
<td><strong>COLORED BUFFERED BIKE LANES</strong>&lt;br&gt;Width: 2’ min. buffer, 3’ preferred buffer</td>
<td>• Increase the visibility of bicyclists&lt;br&gt;• Will likely attract new bicyclists</td>
<td>• Require more space than basic bike lanes&lt;br&gt;• Require more maintenance for the buffer striping and colored pavement</td>
<td></td>
</tr>
<tr>
<td><strong>ONE-WAY PROTECTED BIKE LANES</strong>&lt;br&gt;Width: 2’ min. buffer, 3’ preferred buffer</td>
<td>• Provide physical protection between motorists and bicyclists&lt;br&gt;• Provide the highest level of comfort for on-street bicycling&lt;br&gt;• Likely attract the highest number of new bicyclists of all the bike lane types&lt;br&gt;• Calm vehicle traffic&lt;br&gt;• Are simpler to design and less costly than two-way protected bike lanes</td>
<td>• Can require removal of travel lane or on-street parking&lt;br&gt;• Cost more than basic bikes lanes, colored bike lanes and buffered bike lanes&lt;br&gt;• Require conflict mitigation with driveways, bus stops, intersections and turning vehicular movement</td>
<td></td>
</tr>
<tr>
<td><strong>TWO-WAY PROTECTED BIKE LANES</strong>&lt;br&gt;Width: 10’ bike lane with 2’ buffer min., 12’ bike lane with 3’ buffer preferred</td>
<td>• Provide physical protection between motorists and bicyclists&lt;br&gt;• Provide the highest level of comfort for on-street bicycling&lt;br&gt;• Likely attract the highest number of new bicyclists of all the bike lane types&lt;br&gt;• Calm vehicle traffic&lt;br&gt;• Require less space than one-way protected bike lanes</td>
<td>• Can require removal of travel lane or on-street parking&lt;br&gt;• Cost more than basic bikes lanes, colored bike lanes and buffered bike lanes&lt;br&gt;• Require conflict mitigation with driveways, bus stops, intersections and turning vehicular movement&lt;br&gt;• Are more complicated to design and operate, and costs more than one-way protected bike lanes</td>
<td></td>
</tr>
</tbody>
</table>
## BIKEWAY REFERENCE MATRIX

<table>
<thead>
<tr>
<th>BIKE ROUTE WITH GREENBACK SHARROWS</th>
<th>ADVANTAGES</th>
<th>DISADVANTAGES</th>
</tr>
</thead>
</table>
| Width: No additional pavement width required; spacing placement no greater than 250’ apart | • More visible than signed bike routes  
• Helps to properly position cyclists with visible pavement markings  
• Educates motorists that bicyclists may use the full lane | • Requires the bicyclists to share the lane with vehicular traffic  
• Provide little additional comfort for bicyclists  
• Attracts few new riders |

<table>
<thead>
<tr>
<th>BIKE ROUTE</th>
<th>ADVANTAGES</th>
<th>DISADVANTAGES</th>
</tr>
</thead>
</table>
| Width: No additional pavement width required | • Raises motorist awareness of the presence of bicyclists and to share the road  
• Helps to properly position bicyclists with wayfinding signage  
• Informs bicyclists of continuous and connected bikeway network | • Requires the bicyclists to share the lane with vehicular traffic  
• Provide little additional comfort for bicyclists  
• Attracts few new riders |

**DESCRIPTION**
COLORED PAVEMENT MARKINGS

- Pavement coloring is useful for a variety of applications in conjunction with bicycle facilities. The primary goal of colored pavements is to differentiate specific portions of the traveled way, but colored pavements can also visibly reduce the perceived width of the street.

- Colored pavements are used to highlight conflict areas between bicycle lanes and turn lanes, especially where bicycle lanes merge across motor vehicle turn lanes. Colored pavements can be used in conjunction with shared lane markings (greenback sharrows) in heavily used commercial corridors where no other provisions for bicycle facilities are evident.

- While a variety of colored treatments have been used, FHWA has approved a bright green for interim use. Maintenance of color and surface condition are considerations. Traditional traffic paints and coatings can become slippery. Long life surfaces with good wet skid resistance should be considered.
WAYFINDING

The ability to navigate through a region is informed by landmarks, natural features, signs, and other visual cues. Wayfinding is a cost-effective and highly visible way to improve the bicycling environment by familiarizing users with the bicycle network, helping users identify the best routes to destinations, addressing misconceptions about time and distance, and helping overcome a barrier to entry for infrequent cyclists (e.g., “interested but concerned” cyclists).

A bikeway wayfinding system is typically composed of signs indicating direction of travel, location of destinations, and travel time/distance to those destinations; pavement markings indicating to bicyclists that they are on a designated route or bike boulevard and reminding motorists to drive courteously; and maps providing users with information regarding destinations, bicycle facilities, and route options.
Intersections are junctions at which different modes of transportation meet and facilities overlap. A well-designed intersection facilitates the interchange between bicyclists, pedestrians, motorists, and transit so traffic flows in a safe and efficient manner. Designs for intersections with bicycle facilities should reduce conflicts between bicyclists (and other vulnerable road users) and vehicles by heightening visibility, denoting a clear right of way, and ensuring that the various users are aware of each other. Intersection treatments can resolve both queuing and merging maneuvers for bicyclists, and are often coordinated with timed or specialized signals.

The configuration of a safe intersection for bicyclists may include additional elements such as color, signs, medians, signal detection, and pavement markings. Intersection design should take into consideration existing and anticipated bicyclist, pedestrian, and motorist movements. In all cases, the degree of mixing or separation between bicyclists and other modes is intended to reduce the risk of crashes and increase bicyclist comfort. The level of treatment required for bicyclists at an intersection will depend on the bicycle facility type used, whether bicycle facilities are intersecting, the adjacent street function, and the adjacent land use.
BIKEWAY MARKINGS AT INTERSECTIONS

Continuing marked bicycle facilities at intersections (up to the crosswalk) ensures that separation, guidance on proper positioning, and awareness by motorists are maintained through these potential conflict areas. The appropriate treatment for right-turn only lanes is to place a bike lane pocket between the right-turn lane and the right-most through lane. If a full bike lane pocket cannot be accommodated, a shared bicycle/right turn lane can be installed that places a standard-width bike lane on the left side of a dedicated right-turn lane. A dashed strip delineates the space for bicyclists and motorists within the shared lane. This treatment includes signs advising motorists and bicyclists of proper positioning within the lane. Sharrows are another option for marking a bikeway through an intersection where a bike lane pocket cannot be accommodated.

BIKE BOXES

A bike box is a designated area at the head of a traffic lane at a signalized intersection that provides bicyclists with a safe and visible way to get ahead of queuing traffic during the red signal phase. Appropriate locations include:

- At signalized intersections with high volumes of bicycles and/or motor vehicles, especially those with frequent bicyclist left-turns and/or motorist right-turns
- Where there may be right or left-turning conflicts between bicyclists and motorists
- Where there is a desire to better accommodate left-turning bicycle traffic
- Where a left turn is required to follow a designated bike route or boulevard or access a shared-use path, or when the bicycle lane moves to the left side of the street
- When the dominant motor vehicle traffic flows right and bicycle traffic continues through (such as at a Y intersection or access ramp)
TWO-STAGE TURN QUEUE BOXES

On right side protected bike lanes, bicyclists are often unable to merge into traffic to turn left due to physical separation. This makes the provision of two-stage left turns critical in ensuring these facilities are functional. The same principles for two-stage turns apply to both bike lanes and protected bike lanes. While two-stage turns may increase bicyclist comfort in many locations, this configuration will typically result in higher average signal delay for bicyclists due to the need to receive two separate green signal indications (one for the through street, followed by one for the cross street) before proceeding.

PROTECTED INTERSECTIONS

At some intersections Holland is using protective treatments for bicycles similar to protected bike lanes. These intersections have islands and crosswalks that allow people on bicycles to advance further in the intersection than motor vehicles, and to stay to the right of motor vehicles. The islands protect bicyclists at the intersections. These treatments are designed in conjunction with and next to pedestrian crossings.
BICYCLE SIGNAL HEADS

Bicycle signal heads may be installed at signalized intersections to improve identified safety or operational problems for bicyclists; they provide guidance for bicyclists at intersections where bicyclists may have different needs from other road users (e.g., bicycle-only movements and leading bicycle intervals) or to indicate separate bicycle signal phases and other bicycle-specific timing strategies. A bicycle signal should only be used in combination with an existing conventional or hybrid beacon. In the United States, bicycle signal heads typically use standard three-lens signal heads in green, yellow, and red with a stencil of a bicycle.

BICYCLE SIGNAL DETECTION

Bicycle detection is used at actuated traffic signals to alert the signal controller of bicycle crossing demand on a particular approach. Bicycle detection occurs either through the use of push buttons or by automated means (e.g., in-pavement loops, video, and microwave). Inductive loop vehicle detection at many signalized intersections is calibrated to the size or metallic mass of a vehicle, meaning that bicycles may often go undetected. The result is that bicyclists must either wait for a vehicle to arrive, dismount, and push the pedestrian button (if available), or cross illegally. Loop sensitivity can be increased to detect bicycles.

Proper bicycle detection must accurately detect bicyclists (be sensitive to the mass and volume of a bicycle and its rider); and provide clear guidance to bicyclists on how to actuate detection (e.g., what button to push or where to stand).

LEADING BICYCLE INTERVALS

Based on the Leading Pedestrian Interval, a Leading Bicycle Interval (LBI) can be implemented in conjunction with a bicycle signal head. Under an LBI, bicyclists are given a green signal while the vehicular traffic is held at all red for several seconds, providing a head start for bicyclists to advance through the intersection. This treatment is particularly effective in locations where bicyclists are required to make a challenging merge or lane change (e.g., to access a left turn pocket) shortly after the intersection, as the LBI would give them sufficient time to make the merge before being overtaken by vehicular traffic. This treatment can be used to enhance a bicycle box.

BICYCLE COUNTDOWNS

Near-side bicycle signals may incorporate a “countdown to green” display to provide information about how long until the green bicycle indication is shown, enabling riders to push off as soon as the light turns green.
Bicycle parking is not standardized in any state or municipal code. However, there are preferable types of secure bicycle accommodations available. Bicycle parking is a critical component of the network and facilitates bicycle travel, especially for commuting and utilitarian purposes. The provision of bicycle parking at every destination ensures that bicyclists have a place to safely secure their mode of travel. Elements of proper bicycle parking accommodation are outlined below.

- Bike racks provide short-term parking. Bicycle racks should offer adequate support for the bicycles and should be easy to lock to. The figures to the right display a common inverted-U design, a multi-bicycle rack, and an innovative concept in which the bike rack itself looks like a bicycle.

- Long-term parking should be provided for those needing all day storage or enhanced safety. Bicycle lockers offer good long-term storage, as shown on the left. Attendant and automated parking also serves long-term uses.

- Bicycle parking should be clearly identified by signage, such as shown in the figure on the left. Signage shall also identify the location of racks and lockers at the entrance to shopping centers, buildings, and other establishments where parking may not be provided in an obvious location, such as near a front door.

- Bicycle parking should be located close to the front door of buildings and retail establishments in order to provide for the convenience, visibility, and safety of those who park their bicycles.

- Bicycle lockers should have informational signage, placards, or stickers placed on or immediately adjacent to them identifying the procedure for how to use a locker. This information at a minimum should include the following:
  
  - Contact information to obtain a locker at City Hall or other administrating establishment
  - Cost (if any) for locker use
  - Terms of use
  - Emergency contact information

- Bicycle lockers should be labeled explicitly as such and shall not be used for other types of storage.

- Bicycle racks and storage lockers should be bolted tightly to the ground in a manner that prevents their tampering.
SAFE ROUTES TO SCHOOL DESIGN GUIDELINES
SAFE ROUTES TO SCHOOL
DESIGN GUIDELINES

Many traffic control devices, signs, markings, and other street design features can be used to make walking and bicycling to school safer. This section highlights some of the most important and most commonly recommended.

The following guidelines present the recommended minimum design standards and other recommended ancillary support items for:

- Neighborhood Traffic Circles
- Pedestrian Crossing Islands
- Pedestrian Hybrid Beacons
- Pedestrian-Activated Pushbuttons
- Raised Crosswalks
- Rectangular Rapid-Flash Beacons
- Reduced Curb Radius
- Removable Pylons
- Right-turn Channelization Islands
- Roundabouts
- Rumble Bars
- Scramble Phases
- Signal Timing/Phasing
- Signs
- Speed Feedback Signs

- Access Management
- Streetscape Features

- Audio Pedestrian Signals
- Advance Stop Bars
- Advance Yield Lines
- Countdown Signals
- Crosswalk Markings
- Curb Extensions
- Curb Ramps
- Intersection Geometry Modifications
- LED-Flashing Lights on Stop Signs
- Lighting
- Medians
- Median Noses
- Midblock Crossings

- SIDEWALKS
- SIDEWALK DESIGN
- SAFE ROUTES TO SCHOOL REFERENCE MATRIX
Many traffic control devices, signs, markings, and other street design features can be used to make walking and bicycling to school safer. This section highlights some of the most important and most commonly recommended.

The California Manual on Uniform Traffic Control Devices (CA MUTCD) has developed standards and guidance to be used for signs and markings. Some are mandatory, others are advisory, and some are optional. The following subsection shows the basic signs and markings used around schools. The recommendations provided in this document are based on the CA MUTCD, 2014 Edition.

**EXPERIMENTAL DEVICES**

As of the writing of this manual, a number of recommended devices are considered experimental. They have not yet been fully adopted by the Federal Highway Administration Manual on Uniform Traffic Control Devices (FHWA MUTCD) or CA MUTCD. These devices appear to be promising improvements in bicycle and pedestrian access and safety as they have been widely used in Europe and experimented with in the US. Any jurisdiction wishing to use these treatments should follow the appropriate experimental procedures. Rectangular-rapid flash beacons (RRFBs) have been given blanket interim approval for use in California. For these, the City only needs to notify Caltrans that it will use these. To conduct these experiments, the City would need to follow the guidelines set forth by the FHWA here: [https://mutcd.fhwa.dot.gov/condexper.htm](https://mutcd.fhwa.dot.gov/condexper.htm) and to the California Traffic Control Device Committee following their guidelines set forth in Section 1A.10 of the CA MUTCD.

---

SCHOOL AREA SIGNS

SCHOOL AREA

- The **School Walk Zone** may be defined by State or Local policy, but if not, a general rule of thumb is walking boundary ½ mile or 1-mile out from an elementary school, sometimes further for middle and high schools. The dotted circle shown in this photo is intended to provide a visual of a “walk zone”, but rarely is the walk zone an exact circle.

- The **School Zone** is the roadway (or roadways) immediately adjacent to the school, usually extending 1 to two blocks in each direction.

SCHOOL AREA SIGNS

SR1-1 (SCHOOL ZONE SIGN)
Many school signs begin with the basic School Advanced Warning sign labeled “S1-1”. It is used to notify street users that they are entering a School Zone that includes school buildings or grounds, a school crossing, or a related activity adjacent to the street. It can identify the location of the beginning of a School Zone. It also combines with other signs, including Assembly B and D signs, to designate the location of and approach to school crossings.

ASSEMBLY A
The School Warning Assembly A includes the School (SP-4) plaque, and may be used to supplement the SR1-1 sign. This should be posted at the school boundary, and may be posted up to 500 feet in advance of the school boundary. It may also be accompanied with arrows pointing to the school if on another street.

ASSEMBLY B
The School Crosswalk Warning Assembly B includes S1-1 with an arrow. It shall be posted at a crosswalk that is not controlled by a stop sign or traffic signal.
ASSEMBLY C
The School Speed Limit Sign (Assembly C) includes a Speed Limit (R2-1) sign, with a School (S4-3P) sign, and When Children Are Present (S4-2P). The Assembly C sign should be used where a reduced school speed limit zone has been established based on an engineering study or where a reduced school speed limit is specified by statute. The sign should be placed where the reduced school speed limit exists. It may be placed up to 500 feet in advance of the school boundary. The sign should be used on streets where speed limits contiguous to a school or school grounds are greater than 25 mph. The prima facie speed limit of 25 mph is in effect for Assembly C. With an engineering study (designated by the CA MUTCD) a city may reduce the school speed limit to 15 mph on a residential street where some other conditions are met.

ASSEMBLY D
The School Advanced Warning Assembly D includes the S1-1 sign along with either Ahead (W16-9P) or a distance sign e.g. “200 FT” (W16-2aP). It should be used on the approach of a crosswalk that is not controlled by a stop sign or traffic signal. Assembly D signs shall be used in advance of any Assembly B or C signs. Assembly D signs are optional where an S1-1 sign or Assembly A sign is posted. It may also be accompanied with arrows pointing to the school if on another street.

R1-5
Yield Here to Pedestrians (R1-5) signs may be used in advance of a crosswalk that crosses an uncontrolled multi-lane approach. They should be placed at the location of Advance Yield Lines (see page D-50).

W82-1
Railroad warning signs (W82-1) can be used to alert pedestrians of railroad crossings.

R15-8
Alternative to W82-1, R15-8 signs may be used.
INTERSECTION TYPE GUIDANCE

Every location needs tailored design and engineering judgment. That judgment should follow the guidelines described in each of the following device sheets, as well as other guidance from the CA MUTCD and other documents. We can, however, identify the treatments that are commonly used at different types of intersections. They are as listed below.

UNCONTROLLED CROSSINGS (NO SIGNAL OR STOP SIGN)

- High-visibility continental crosswalks
- Advance yield lines
- Signs
- Crossing islands (the most important device at multi-lane crossings)
- Rectangular rapid-flash beacons
- Hybrid beacons

As the number of travel lanes, traffic volume, street width and speed increases, more devices are needed. Pedestrians need signals to cross four-lane crossings with ADTs between 20,000 and 30,000 (or greater); the exact threshold depends on the number of lanes, speeds, and roadway width.

STOP-CONTROL CROSSINGS

- Marked crosswalks (high-visibility continental crosswalks depending on traffic volumes, number of lanes, street width, number of pedestrians, presence of schools nearby)
- Advance stop bars
- Perpendicular curb ramps with tactile warning devices
- Curb extensions where on-street parking exists (depending on traffic volumes, number of lanes, street width, number of pedestrians, presence of schools nearby)
- Crossing islands (depending on number of

SIGNALIZED CROSSINGS

- Countdown pedestrian signal heads
- Advance stop bars
- High-visibility continental crosswalks
- Accessible pedestrian signals
- Curb extensions where on-street parking exists
- Crossing islands (depending on available space, traffic volumes, number of lanes, street width, number of pedestrians, presence of schools nearby)
A device that communicates information to pedestrians in nonvisual format such as audible tones, verbal messages, and/or vibrating surfaces. These signals provide accessibility to those who have visual impairments. Verbal messages are generally preferred to tones.

**KEY DESIGN FEATURES**
- Provide pedestrian signal information to those who cannot see the pedestrian signal head across the street
- Provide information to pedestrians about the presence and location of pushbuttons, if pressing a button is required to actuate pedestrian timing
- Provide unambiguous information about the WALK indication and which crossing is being signaled
- Use audible beaconing only where necessary
- Two poles should be installed for APS speakers, located close to departure location and crosswalk
- Ensure accessibility to for pushbutton placement

**BENEFITS**
- Create a more accessible pedestrian network
- Assist those who are visually impaired
- Can contain additional wayfinding information in messages
- More accurate judgments of the onset of the WALK interval
- Reduction in crossings begun during DON’T WALK
- Reduced delay
- Significantly more crossings completed before the signal changed

**APPLICATIONS**
- ADA requires newly constructed or altered public facilities to be accessible, regardless of the funding source
- Installed by request along a specific route of travel for a particular individual, or group of individuals who are blind or visually impaired
ADVANCE STOP BARS

DESCRIPTION

A placing of the stop limit line for vehicle traffic at a traffic signal behind the crosswalk for the added safety of crossing pedestrians.

KEY DESIGN FEATURES

- Vehicle stop line moved 4 to 6 feet further back from the pedestrian crossing

BENEFITS

- Keep cars from encroaching on crosswalk
- Low cost, effective device
- Improve visibility of through cyclists and crossing pedestrians for motorists
- Allow pedestrians and motorists more time to assess each other’s intentions when the signal phase changes

APPLICATIONS

- Can be used at any signalized or stop-controlled intersection
- Presence of advanced stop bar is more important on roadways with higher speeds (30 mph and greater)
- Should be included at all crossings of road with four or more lanes without a raised median or crossing island that has an ADT of 12,000

Car stops at advanced stop line, prior to crosswalk
ADVANCE YIELD LINES

DESCRIPTION

A placing of the yield line (shark’s teeth) for vehicle traffic in advance of a crosswalk at uncontrolled locations.

KEY DESIGN FEATURES

• Advance yield lines should be placed 20 to 50 feet in advance of crosswalks along with “Yield here to pedestrians” sign placed adjacent to the markings.

BENEFITS

• Inexpensive treatment
• Improve sight visibility of pedestrians and motorists when used correctly
• Help reduce potential of multiple-threat crashes
• Yielding vehicle does not screen the view of motorists in the pedestrian’s next lane of travel
• Reduce likelihood that vehicle travelling behind yielding vehicle will cross centerline and strike pedestrian

APPLICATIONS

• Crosswalks on streets with uncontrolled approaches
• Right-turn slip lane crossings
• Midblock marked crosswalks
• Presence of advanced yield line are most important on multi-lane streets
**Pedestrian countdown signal shows there are 12 seconds left to cross before signal will turn**

**COUNTDOWN SIGNALS**

**DESCRIPTION**

A walk signal that provides a countdown to the next solid “don’t walk” signal phase in order to provide pedestrians with information on how much time they have to cross.

**KEY DESIGN FEATURES**

- Ensure that signals are visible to pedestrians
- When possible, provide a walk interval for every cycle
- Pedestrian push buttons must be well positioned and within easy reach for all approaching pedestrians

**BENEFITS**

- Indicate appropriate time for pedestrians to cross
- Provide pedestrian clearance interval

**APPLICATIONS**

- Should be placed for each crossing leg at signalized intersections
CROSSWALK MARKINGS

DESCRIPTION

High-visibility crosswalks — continental, zebra-stripe, piano key, or ladder style, should be provided at any intersection where a significant number of pedestrians cross. They are most important at uncontrolled crossings of multi-lane streets.

KEY DESIGN FEATURES

- Locations should be convenient for pedestrian access
- Used in conjunction with other measures such as advance warning signs, markings, crossing islands, and curb extensions
- Place to avoid wear due to tires

BENEFITS

- Indicate preferred pedestrian crossings
- Warn motorists to expect pedestrians crossing
- Higher visibility than typical lateral-line marked crosswalks
- Can be placed to minimize wear and tear (between tire tracks)

APPLICATIONS

- Enhance all marked crossings
- Necessary at marked midblock and uncontrolled crossing locations

Continental-style marked crosswalk at midblock crossing is visible from farther away
CURB EXTENSIONS

DESCRIPTION

A segment of sidewalk, landscaping, or curb that is extended into the street at the corner, and usually associated with crosswalks. A curb extension typically extends out to align with the edge of the parking lane. They can be placed at locations where there is no on-street parking by tapering the extensions to the approach.

KEY DESIGN FEATURES

- Curb extensions sited at corners or midblock
- Extends out to approximately align with parking (typically 1’ to 2’ less than parking lane width)
- Reduced effective curb radius
- Can be tapered at approach in cases where there is no on-street parking
- Should not block travel or bicycle lanes
- Paired with bicycle lanes, curb extensions can increase the effective curb radius for larger vehicles
- Bulb-outs are a type of curb extension that has a distinct bulb-shape that extends into the on-street parking lane (see above graphic)

APPLICATIONS

- Areas with high pedestrian traffic (downtown, mixed-use areas) where traffic calming is desired
- Jurisdiction must evaluate placement on case-by-case basis, taking into account drainage, signal pole modification, lane widths, driveways, and bus stops

BENEFITS

- Shorten pedestrian crossing
- Reduce curb radius, slowing turning vehicles
- Provide traffic calming
- Improve sight visibility for pedestrians and motorists
- Provide space for landscaping, beautification, water treatment, furnishings, signs, etc.
- Often can provide space for perpendicular curb ramps

Asheville, North Carolina curb extension
CURB RAMPS

DESCRIPTION

A ramp and landing that allows for a smooth transition between sidewalk and street via a moderate slope. The Americans with Disabilities Act requires wheelchair access at every street corner. On streets with low traffic volumes and short crossing distances, diagonal ramps may be acceptable.

KEY DESIGN FEATURES

- Where feasible, ramps for each crosswalk at an intersection are preferable
- Tactile warnings will alert pedestrians to the sidewalk/street edge
- Curb ramps must have a slope of no more than 1:12 (must not exceed 25.4 mm/0.3 m (1 in/ft) or a maximum grade of 8.33 percent), and a maximum slope on any side flares of 1:10

APPLICATIONS

- Curb ramps must be installed at all intersections and midblock locations where pedestrian crossings exist, as mandated by federal legislation (1973 Rehabilitation Act and 1990 Americans with Disabilities Act)
- Priority locations for curb ramps are in Downtown, near transit stops, schools, parks, medical facilities, and near residences with people who use wheelchairs

BENEFITS

- Double curb ramps make the trip across the street shorter and more direct than diagonal ramps
- Provide compliance with ADA when designed correctly
- Improve pedestrian accessibility for those in wheelchairs, with strollers, and for children

DESCRIPTION

Diagonal Curb Ramp

Perpendicular Curb Ramp

KEY DESIGN FEATURES

BENEFITS

APPLICATIONS
INTERSECTION GEOMETRY MODIFICATION

DESCRIPTION

Geometry sets the basis for how all users traverse intersections and interact with each other. Intersection skew can create an unfriendly environment for pedestrians. Skewed intersections are those where two streets intersect at angles other than right angles. Intersection geometry should be as close to 90 degrees as possible.

KEY DESIGN FEATURES

- Consider removing one or more legs from the major intersection and creating a minor intersection further up or downstream (if there are more than two streets intersecting)
- Close one or more of the approach lanes to motor vehicle traffic, while still allowing access for pedestrians and bicyclists
- Introduce pedestrian islands if the crossing distance exceeds three lanes (approximately 44 feet)
- General use, travel lanes, and bike lanes may be striped with dashes to guide bicyclists and motorists through a long undefined area

BENEFITS

- Skewed intersections are undesirable
- Slow turning vehicles by making angles more acute
- Shorten pedestrian crossing distances
- Improve sight visibility

APPLICATIONS

- Every reasonable effort should be made to design or redesign the intersection closer to a right angle
LED-FLASHING LIGHTS ON STOP SIGNS

DESCRIPTION

LED-Flashin Stop Signs heightens motorists’ awareness and increases compliance.

KEY DESIGN FEATURES

- LED units may be used individually within the face of a sign and in the border of a sign
- LEDs units shall be red to go with stop signs. If flashed, all LED units shall flash simultaneously at a rate of between 50-60 times per minute
- LEDs visible during daytime and nighttime
- Commonly solar-powered and requires low power usage
- May be set to flash throughout the day or be vehicle or pedestrian activated

BENEFITS

- Increase motorists compliance with stop signs
- Enhance visibility and recognition of regulatory and warning signs to drivers, especially under low-light or low-visibility conditions

APPLICATIONS

- Apply at stop sign locations with sight visibility limitations (i.e. dusk/dawn glare) and documented problems of drivers failing to stop
- LED flashing stop signs are covered in the FHWA MUTCD under Section 2A.08
LIGHTING

DESCRIPTION

Lighting is important to include at all pedestrian crossing locations for the comfort and safety of the road users. Lighting should be present at all marked crossing locations. Lighting provides cues to drivers to expect pedestrians earlier.

KEY DESIGN FEATURES

- FHWA HT-08-053, The Information Report on Lighting Design for Mid-block Crosswalks, found that a vertical illumination of 20 lux in front of the crosswalk, measured at a height of 5 feet from the road surface, provided adequate detection distances in most circumstances.
- Illumination just in front of crosswalks creates optimal visibility of pedestrians
- Crosswalk lighting should provide color contrast from standard roadway lighting

APPLICATIONS

- Ensure pedestrian walkways and crosswalks are well lit
- Use uniform lighting levels
- When installing roadway lighting, install on both sides of wide streets
- Consider pedestrian vs. vehicular scale for lighting (each has a different application)

BENEFITS

- Enhance safety of all roadway users, particularly pedestrians
- Enhance commercial districts
- Improve nighttime safety

Well-lit crosswalk
MEDIANS

DESCRIPTION

Raised medians are the most important, safest, and most adaptable engineering tool for improving many street crossings. A median is a continuous raised area separating opposite flows of traffic.

Medians are a FHWA Proven Safety Countermeasure.

KEY DESIGN FEATURES

- Raised median with center area for landscaping
- Provide frequent breaks in median to assist crossing pedestrians
- Minimum of 6’ wide, but usually as wide as center-turn lane

BENEFITS

- Separate traffic flows
- Slow traffic
- Break crossings into shorter segments
- Provide space for landscaping and beautification
- Make street feel narrower
- Allow pedestrians to cross during a gap in one direction of traffic at a time

APPLICATIONS

Raised medians and crossing islands are commonly used between intersections when blocks are long (500 feet or more in downtowns) and in the following situations:

- Speeds are higher than desired
- Streets are wide
- Traffic volumes are high
- Sight distances are poor
- Raised islands have nearly universal applications and should be placed where there is a need for people to cross the street
- To slow traffic

A gap and channelization in this raised median places pedestrians in correct orientation to cross
MEDIAN NOSES

DESCRIPTION

A median nose, which extends past the crosswalk, protects people waiting on the median and slows turning drivers.

Median noses, which create refuge areas, are a FHWA Proven Safety Countermeasure.

KEY DESIGN FEATURES

- Should be as wide as the existing median but preferably a minimum of 6’ wide
- Do not block through path for pedestrians and turning movements for vehicles
- Separate directions of vehicle travel

BENEFITS

- Allow pedestrians to cross one direction of traffic at a time
- Slow vehicles
- Provide refuge if crossing time is insufficient

APPLICATIONS

- Any bi-directional street with adequate width, typically where a raised median exists
- Especially important on multi-lane streets
- Intersections where there are mixtures of significant pedestrian and vehicle traffic (typically with more than 12,000 ADT and intermediate or high travel speeds)
MIDBLOCK CROSSINGS

DESCRIPTION

A crosswalk designed at a mid-point between intersections. These are best suited where there is a long distance (greater than 400 feet) between crosswalks on retail streets, in front of schools, etc. Intersections without traffic signals or STOP signs are considered uncontrolled intersections.

KEY DESIGN FEATURES

- High-visibility crosswalk marking
- Crossing islands, median gap, or short crossing
- Advanced crossing and crossing signs
- Advanced yield markings and signs
- Signs
- Rapid-flash beacons where traffic volumes and street width merit
- Pedestrian activated signals should be used for streets with high speeds and volumes

APPLICATIONS

- Decision to mark a crosswalk at an uncontrolled location should be guided by an engineering study
- Consider vehicular volumes and speeds, roadway width and number of lanes, stopping sight distance and triangles, distance to the next controlled crossing, night time visibility, grade, origin-destination of trips, left turning conflicts, and pedestrian volumes.
- On multi-lane roadways, marked crosswalks ALONE are not recommended under the following conditions: ADT > 12,000 without median; ADT > 15,000 with median; or speeds > 40 mph. Add devices such as advanced stop bar, crossing islands, etc.

BENEFITS

- Bring both sides of the street closer for pedestrians
- Enhance visibility of pedestrians
- Informs drivers to expect pedestrians, and directs pedestrians to cross at specified locations
- Deter pedestrians from dashing across street at random

Midblock crossing in Vancouver B.C., Canada
NEIGHBORHOOD TRAFFIC CIRCLES

DESCRIPTION

Neighborhood traffic circles, sometimes called “mini-circles” are small circles that are retrofitted into local street intersections to control vehicle speeds within a neighborhood. Typically, a tree and/or landscaping are located within the central island to provide increased visibility of the roundabout and enhance the intersection.

KEY DESIGN FEATURES

- The design of neighborhood traffic circles is primarily confined to selecting a central island size to achieve the appropriate design speed of around 15 to 20 mph
- Neighborhood traffic circles should generally have similar features as roundabouts, including yield-on-entry and painted or mountable splitter islands
- Can replace stop-controlled intersections in residential areas

APPLICATIONS

- Neighborhood traffic circles should be used on low-volume, neighborhood streets
- Larger vehicles can turn left in front of the central island if necessary
- Curb radius should be tight; may impede some large vehicles from turning
- Landscaped circles often require agreements from adjacent residents and maintenance

BENEFITS

- Create continuous, slow vehicle speeds
- Better for bicyclists than stop-controls
- Improve traffic flow
- Allow space for landscaping and beautification, as well as stormwater recapture
- Reduce crashes

Neighborhood traffic circle in Vancouver B.C., Canada
**PEDESTRIAN CROSSING ISLANDS**

**DESCRIPTION**

A defined area in the center of the street that is raised and provides a refuge area for pedestrians crossing a busy street. They can be used at any street crossing, but are most important at uncontrolled crossings of multi-lane streets.

Pedestrian crossing islands are a FHWA Proven Safety Countermeasure.

**KEY DESIGN FEATURES**

- Raised, curbed islands that flank marked crosswalk
- Do not block through path
- Separate directions of vehicle travel
- Preferred width of at least 6’ wide (minimum of at least 4’ wide per FHWA)

**BENEFITS**

- Allow pedestrians to cross one direction of traffic at a time
- Slow vehicles
- Provide refuge if crossing time is insufficient

**APPLICATIONS**

- Any bi-directional street with adequate width
- Especially important on uncontrolled multi-lane streets
- Can be placed in between lanes, in slip lanes, and replace center turn lanes
- Need to be designed to accommodate turning movements of large vehicles
A pedestrian hybrid beacon is used to warn and control traffic at an unsignalized location so as to help pedestrians cross a street or highway at a marked crosswalk.

The pedestrian hybrid beacon is an intermediate option between the operational requirements and effects of a rectangular rapid-flash beacon (RRFB) and a full pedestrian signal because it provides a positive stop control in areas without the high pedestrian traffic volumes that typically warrant the installation of a signal.

Pedestrian Hybrid Beacons are a FHWA Proven Safety Countermeasure.

### KEY DESIGN FEATURES

- Minimum of 20 pedestrians per hour is needed to warrant installation
- Should be placed in conjunction with signs, crosswalks, and advanced yield lines to warn and control traffic at locations where pedestrians enter or cross a street or highway
- Should only be installed at a marked crosswalk

### BENEFITS

- Can be used at a location that does not meet traffic signal warrants or at a location that meets traffic signal warrants but a decision has been made to not install a traffic control signal
- Additional safety measure and warning device at uncontrolled location
- Remain dark until activated

### APPLICATIONS

- Installations should be done according to the Federal MUTCD and CA MUTCD Chapter 4F, “Pedestrian Hybrid Beacons.”
**PEDESTRIAN- ACTIVATED PUSHBUTTONS**

**DESCRIPTION**

Pedestrian-activated traffic controls require pedestrians to push a button to activate a walk signal. Where significant pedestrian traffic is expected, pedestrian-activated signals are generally discouraged. The “WALK” signal should automatically come on.

**KEY DESIGN FEATURES**

- Should be located as close as possible to top of curb ramps without reducing the width of the path
- Buttons should be at a level that is easily reached by people in wheelchairs near the top of the ramp.
- U.S. Access Board guidelines recommend buttons raised above or flush with their housing and large enough (a minimum of 2 inches) for people with visual impairments to see them.
- Buttons should also be easy to push

**APPLICATIONS**

- Areas where there are few pedestrians
- Midblock crossings at locations where signalized crossing is needed

**BENEFITS**

- Provide for smoother traffic flow if there are few pedestrians, and no need to provide walk signal for every cycle
RAISED CROSSWALKS

DESCRIPTION

A crosswalk that has been raised in order to slow motor vehicles and to enhance the visibility of crossing pedestrians.

KEY DESIGN FEATURES

• Trapezoidal in shape on both sides and have a flat top where the pedestrians cross
• Level crosswalk area must be paved with smooth materials
• Texture or special pavements used for aesthetics should be placed on the beveled slopes, where they will be seen by approaching motorists
• Often require culverts or another means of drainage treatment

APPLICATIONS

• Areas with significant pedestrian traffic and where motor vehicle traffic should move slowly, such as near schools, on college campuses, in Main Street retail environments, and in other similar places
• Effective near elementary schools where they raise small children by a few inches and make them more visible

BENEFITS

• Increase visibility of pedestrian, especially to motorists in large vehicles
• Traffic calming
• Continuous level for pedestrians

Raised crosswalk on campus
RECTANGULAR RAPID-FLASH BEACONS

DESCRIPTION

The RRFB uses rectangular-shaped high-intensity LED-based indications, flashes rapidly in a wig-wag “flickering” flash pattern, and is mounted immediately between the crossing sign and the sign’s supplemental arrow plaque.

KEY DESIGN FEATURES

- Placed at crosswalk and in center median / crossing island
- Crosswalk sign with arrow
- Wig-wag flickering flash pattern mounted between crossing sign and arrow pointing to crosswalk

BENEFITS

- Increase motorist compliance to yield to pedestrians crossing at uncontrolled marked locations
- Provide additional visibility to crosswalks
- Visible at night and during the day

APPLICATIONS

- Approved for interim use by the California Traffic Control Device Committee (CTCDC) and FHWA
- City should go through appropriate CTCDC steps to use
- Use of RRFBs should be limited to locations with the most critical safety concerns, such as pedestrian and school crosswalks at uncontrolled locations
Low cost curb extension with paint and removable pylons

**DESCRIPTION**

Removable pylons, also known as flexible delineators, are intended not so much to obstruct traffic as to guide it. They alert motorists to changing road conditions and especially useful in areas where side-swipe types of crashes are likely to occur.

For the purposes of this Plan, removable pylons have been proposed on wide streets where painted buffers have been used to delineate non-standard roadway shoulders. They are used to reduce the crossing distance for pedestrians and provide a physical buffer from vehicular traffic.

**KEY DESIGN FEATURES**

- High degree of visibility as they rise vertically from the road surface and reflective at night
- Typically used to alert motorists of changing road conditions

**BENEFITS**

- Provide a physical buffer from the travel lanes to increase comfort for pedestrians and bicyclists
- Narrow the streets to slow driver speeds

**APPLICATIONS**

- May be used to create temporary curb extensions
- May also be used delineate protected bike lanes
  - 3’ minimum buffer width preferred per FHWA or 18” per NACTO
  - 10’-40’ spacing desired by FHWA
The geometry of the corner radius impacts the feel and look of a street. Tight corner radii create shorter crossing distances, and provide a traffic calming effect.

**KEY DESIGN FEATURES**

- Default design vehicle should be the passenger (P) vehicle; initial corner radius is between 15 and 25 feet
- Larger design vehicles should be used only where they are known to regularly make turns at the intersection (such as in the case of a truck or bus route)
- Design based on the larger design vehicle traveling at near 5 mph or crawl speed
- Consider the effect that bicycle lanes and on-street parking have on the effective radius, increasing the ease with which large vehicles can turn

**APPLICATIONS**

- All corners

**BENEFITS**

- Slower vehicular turning speeds
- Reduced pedestrian crossing distance and crossing time
- Better geometry for installing perpendicular ramps for both crosswalks at each corner
- Simpler and more appropriate crosswalk placement that aligns directly with sidewalks on the other side of the intersection
RIGHT-TURN CHANNELIZATION ISLANDS

DESCRIPTION

A raised channelization island between the through lanes and the right-turn lane is a good alternative to an overly large corner radius and enhances pedestrian safety and access. Allow pedestrians to cross fewer lanes at a time.

KEY DESIGN FEATURES

- Provide a yield sign for the slip lane
- Provide at least a 60-degree angle between vehicle flows
- Place the crosswalk across the right-turn lane about one car length back from where drivers yield to traffic on the other street
- Typical layout involves creating an island that is roughly twice as long as it is wide. The corner radius will typically have a long radius (150 feet to 300 feet) followed by a short radius (20 feet to 50 feet)
- Necessary to allow large trucks to turn into multiple receiving lanes

APPLICATIONS

- Right-turn lanes should generally be avoided as they increase the size of the intersection, the pedestrian crossing distance, and the likelihood of right-turns-on-red by inattentive motorists who do not notice pedestrians on their right
- Heavy volumes of right turns (approximately 200 vehicles per hour or more)

BENEFITS

- Allow motorists and pedestrians to judge the right turn/pedestrian conflict separately
- Reduce pedestrian crossing distance, which can improve signal timing for all users
- Balance vehicle capacity and truck turning needs with pedestrian safety
- Provide an opportunity for landscape and hardscape enhancement
- Slow motorists

Right-turn lane in Orlando, Florida
A roundabout is an intersection design that can replace traffic signals. Users approach the intersection, slow down, stop and/or yield to pedestrians in a crosswalk, and then enter a circulating roadway, yielding to drivers already in the roundabout. The circulating roadway encircles a central island around which vehicles travel counterclockwise.

Roundabouts are a FHWA Proven Safety Countermeasure.

### Key Design Features
- Deflection encourages slow traffic speeds,
- Landscaped visual obstruction in the central island discourage users from entering the roundabout at high speeds
- Central island should not contain attractions
- Each leg of a roundabout has a triangular splitter island that prevents drivers from turning left (the “wrong-way”)
- Truck apron

### Benefits
- Reduce conflicts, all forms of crashes and crash severity (particularly left-turn and right-angle crashes)
- Little to no delay for pedestrians
- Improved accessibility for bicyclists
- Approximately 30% more vehicle capacity than signals (allowing possible reduction in number of lanes and roadway width)
- Reduced maintenance and operational costs, delay, travel time, and vehicle queue lengths

### Applications
Before starting the design of a roundabout it is very important to determine the following:
- Number and type of lane(s) on each approach and departure as determined by a capacity analysis
- Design vehicle for each movement
- Presence of on-street bike lanes
- Right-of-way and its availability for acquisition if needed
- Existence or lack of sidewalks
- Approach grade of each approach
- Transit, existing or proposed
- Roundabouts can be applied at nearly all intersections, but are more legible for single-lane approaches
- Must have adequate space

Single-lane roundabout in La Jolla, California
RUMBLE BARS

DESCRIPTION

Rumble bars, or transverse rumble strips, are used to alert drivers of an unexpected change in the roadway, such as the need to slow down or stop, or changes in the roadway alignment. They are a warning device used to supplement signing and alert drivers of the need to reduce speed.

Rumble bars are a FHWA Proven Safety Countermeasure.

KEY DESIGN FEATURES

- Can be raised bars or grooves placed across the travel lane
- If grooved rumble bars, limit maximum height or depth of \( \frac{1}{2} \) in to minimize the jarring action to vehicles. If thermoplastic materials are used to created raised bars, the material should be white.

BENEFITS

- Provide visual and aural cues to alert motorists to slow down and pay attention to changes in the roadway
- Delineate and create awareness of a pedestrian crosswalk

APPLICATIONS

- Apply on approaches leading up to a pedestrian crosswalk or changing roadway conditions

Transverse rumble bars
A scramble phase provides a separate all-direction red phase in the traffic signal to allow pedestrians to cross linearly and diagonally. They are most appropriate in retail districts with heavy volumes of both pedestrians and motor vehicles, and/or many vehicle turning movements.

**KEY DESIGN FEATURES**

- Signs indicating scramble is permitted
- Countdown signals
- Markings indicating diagonal cross
- Allow pedestrians to cross straight and reduces delay

**BENEFITS**

- Reduce pedestrian delay for those crossing both directions
- Reduce pedestrian-vehicle conflicts by providing an all-pedestrian crossing phase
- Does not necessarily eliminate regular walk phase

**APPLICATIONS**

- Exclusive pedestrian phases may be used where turning vehicles conflict with very high pedestrian volumes and pedestrian crossing distances are short
- Should be used in areas with high pedestrian volumes such as near shopping centers, downtown, university crossings, turning movements, etc.
SIGNAL TIMING/PHASING

DESCRIPTION

Signals provide control of pedestrians and motor vehicles. Signals can be used to control vehicle speeds by providing appropriate signal progression on a corridor. Traffic signals allow pedestrians and bicyclists to cross major streets with only minimal conflict with motor vehicle traffic. Signalized intersections often have significant turning volumes, which conflict with concurrent pedestrian and bicycle movements.

KEY DESIGN FEATURES

- Signal progression at speeds that support the target speed of a corridor
- Short signal cycle lengths
- Ensure signals detect bicycles
- Place pedestrian signal heads in locations where they are visible
- Time the pedestrian phase to be on automatic recall
- Where few pedestrians are expected, place pedestrian pushbuttons in convenient locations, using separate pedestals if necessary.
- Include adequate pedestrian crossing time of 3.5 feet per seconds or more
- Leading Pedestrian Intervals (LPI) allows pedestrians to begin crossing while all directions of traffic have red signal
- Protected left-turn phases are preferable to permissive movements

APPLICATIONS

- City must follow standard warrants in the California MUTCD

BENEFITS

- Reduces pedestrian-vehicle conflicts by providing separate phases for travel
- Limiting permissive turning movements at signalized intersections improves safety for pedestrians
- Walk signals timed at 3.5 feet / second reduce conflicts; less where large numbers of seniors or disabled pedestrians crossing

Traffic signal with pedestrian countdown signal and restricts right-turns on red

Traffic signal with pedestrian countdown signal and restricts right-turns on red
**SIGNS**

**DESCRIPTION**

Signs alert motorists to the presence of crosswalks and pedestrians. Center signs can help slow traffic. These are placed according to the CA MUTCD.

**KEY DESIGN FEATURES**

- Placed with adequate sight distance and according to MUTCD standards
- Should not block pedestrian view or obstruct pathways
- Kept free of graffiti and in good condition
- Should have adequate nighttime reflectivity

**BENEFITS**

- Provide important information
- Give motorists advance warning
- Regulatory signs require certain driver actions and can be enforced

**APPLICATIONS**

- Overuse of signs can create noncompliance and disrespect
- Signs should be placed at locations where appropriate to enforce certain types of behavior
- Uncontrolled crossings
- Commonly used signs are advanced pedestrian crossing sign in advance of marked uncontrolled crossing; pedestrian crossing sign at uncontrolled crossing; and advanced yield signs
SPEED FEEDBACK SIGNS

DESCRIPTION

Alerts motorists when they are going over the speed limit. They are most appropriate where motor vehicles commonly speed and there are pedestrians or bicyclists.

KEY DESIGN FEATURES

- Must be placed in conjunction with speed limit sign
- Should flash “SLOW DOWN” message if driver is going above speed limit

BENEFITS

- Heighten awareness of speed limits
- Can be used to specify lower speed limit during school crossing times
- Alert drivers of their actual speed and posted speed
- Can record traffic counts and speeds

APPLICATIONS

- Place in school zones or corridors where speeding is a known issue

School speed feedback sign placed after a School Assembly C sign
Sidewalks should provide a comfortable space for pedestrians between the roadway and adjacent land uses. Sidewalks along city streets are the most important component of pedestrian mobility. They provide access to destinations and critical connections between modes of travel, including automobiles, transit, and bicycles. General provisions for sidewalks include pathway width, slope, space for street furniture, utilities, trees and landscaping, and building ingress/egress.

Sidewalks in the public right-of-way are generally constructed of concrete, with construction details regarding materials, procedures, and design specified in the Standard Specifications for Public Works Construction (SSPWC), along with its companion SSPWC Standard Plans. However, sidewalks may also be constructed and maintained of other materials such as rubber, decomposed granite, or other hard unyielding surface.

Besides pedestrian mobility, sidewalks also add to people’s outdoor enjoyment of landscape, urban forest, and streetscapes.

Sidewalk maintenance is also important since trees and large shrubs and plant life are common near and around sidewalks, and root systems sometimes lift sidewalks and create vertical displacements. These vertical displacements must be controlled and maintained to a maximum of one inch.

Sidewalks include four distinct zones: the frontage zone, the pedestrian (walking) zone, the furniture zone, and the curb zone. The minimum widths of each of these zones vary based on street classifications as well as land uses.
FRONTAGE ZONE

The frontage zone is the portion of the sidewalk located immediately adjacent to buildings, and provides a safe distance from buildings, walls, fences, or property lines. It includes space for building-related features such as entryways and accessible ramps. It can include landscaping as well as awnings, signs, news racks, benches, and outdoor café seating. In single family residential neighborhoods, landscaping typically occupies the frontage zone.

PEDESTRIAN ZONE

The pedestrian zone, situated between the frontage zone and the furniture zone, is the area dedicated to walking and should be kept clear of all fixtures and obstructions. Within the pedestrian zone, the Pedestrian Access Route (PAR) is the path that provides continuous connections from the public right-of-way to building and property entry points, parking areas, and public transportation.

This pathway is required to comply with ADA guidelines and is intended to be a seamless pathway for wheelchair and white cane users. As such, this route should be firm, stable, and slip-resistant, and should comply with maximum cross slope (transverse) requirements (2 percent grade). The walkway grade (longitudinal) shall not exceed the general grade of the adjacent street. Aesthetic textured pavement materials (e.g., brick and pavers) are best used in the frontage and furniture zones, rather than the PAR. The PAR should be a minimum of 4 feet, but preferably at least 5 feet in width to provide adequate space for two pedestrians to comfortably pass or walk side by side. All transitions (e.g., from street to ramp or ramp to landing) must be flush and free of changes in level. The engineer should determine the pedestrian zone width to accommodate the projected volume of users. In no case will this zone be less than the width of the PAR.

Non-compliant driveways often present significant obstacles to wheelchair users. The cross slope on these driveways is often much steeper than the 2 percent maximum grade. Driveway aprons that extend into the pedestrian zone can render a sidewalk impassable to users of wheelchairs, walkers, and crutches. They need a flat plane on which to rest all four supports (two in the case of crutches). To provide a continuous PAR across driveways, aprons should be confined to the furniture and curb zones.

FURNITURE ZONE

The furniture zone is located between the curb line and the pedestrian zone. The furniture zone should contain all fixtures, such as street trees, bus stops and shelters, parking meters, utility poles and boxes, lamp posts, signs, bike racks, news racks, benches, waste receptacles, drinking fountains, and other street furniture to keep the pedestrian zone free of obstructions. In residential neighborhoods, the furniture zone is often landscaped. Resting areas with benches and space for wheelchairs should be provided in high volume pedestrian districts and along blocks with a steep grade to provide a place to rest for older adults, wheelchair users, and others who need to catch their breath.

CURB ZONE

The curb zone serves primarily to prevent water and cars from encroaching on the sidewalk. It defines where the area for pedestrians begins, and the area for cars ends. It is the area people using assistive devices must traverse to get from the street to the sidewalk, so its design is critical to accessibility.

OTHER SIDEWALK GUIDELINES

- Landscaped buffers or fences should separate sidewalks from off-street parking lots or off-street passenger loading areas.
- Pedestrian and driver sight distances should be maintained near driveways. Fencing and foliage near the intersection of sidewalks and driveways should ensure adequate sight distance as vehicles enter or exit.
- Where no frontage zone exists, driveway ramps usually violate cross slope requirements. In these situations, sidewalks should be built back from the curb at the driveway as shown in the adjacent photo.
- Construction tolerances require less than one quarter inch (1/4") vertical displacement between panel levels.
- Sidewalks should be maintained so that a one inch (1") vertical displacement is not exceeded.
ACCESS MANAGEMENT

DESCRIPTION

Most conflicts between users occur at intersections and driveways. The presence of many driveways in addition to the necessary intersections creates many conflicts between vehicles entering or leaving a street and bicyclists and pedestrians riding or walking along the street.

KEY DESIGN FEATURES

• When possible, new driveways should be minimized and old driveways should be eliminated or consolidated, and raised medians should be placed to limit left turns into and out of driveways.

BENEFITS

• Number of conflict points is reduced
• Pedestrian crossing opportunities are enhanced with a raised median
• Universal access for pedestrians is easier, since the sidewalk is less frequently interrupted by driveway slopes
• Result in more space available for higher and better uses.
• Improved traffic flow may reduce the need for road widening

APPLICATIONS

• New development
• Redevelopment
• Where driveways make sidewalk inaccessible based on ADA guidelines
STREETSCAPE FEATURES

DESCRIPTION

Well-designed walking environments are enhanced by urban design elements and street furniture, such as benches, bus shelters, trash receptacles, and water fountains. Landscaping and streetwater management can create a more beautiful and sustainable environment.

KEY DESIGN FEATURES

- Street furniture should be carefully placed to create an unobstructed path and sight lines for pedestrians
- Good-quality street furniture will show that the community values its public spaces and is more cost-effective in the long run
- Include plans for landscape irrigation and maintenance at the outset
- Ensure adequacy of overhead clearances and detectability of protruding objects for pedestrians who are blind or visually impaired
- Create a theme
- Placemaking
- Sustainable drainage

APPLICATIONS

- Focus improvements in downtown areas and commercial districts
- Landscaping should focus on native plants that will not require excessive watering or maintenance
- Shade-giving trees or shelters are important in jurisdictions that have high temperatures

BENEFITS

- Enhance the pedestrian environment
- Enliven commercial districts by providing improved public space
- Encourage visitors and residents to walk to destinations rather than drive

Street furniture and landscaping in Portland, Oregon
<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>ADVANTAGES</th>
<th>DISADVANTAGES</th>
</tr>
</thead>
</table>
| AUDIO PEDESTRIAN SIGNALS | • Create a more accessible pedestrian network than without  
• Assist those who are visually impaired | • Sound levels could create audible intrusion                                  |
| ADVANCE STOP BARS    | • Cost very little  
• Reduce vehicular encroachment onto crosswalks  
• Improve visibility of pedestrians  
• Provide comfort to pedestrians | • Cost slightly more than without                                             |
| ADVANCE YIELD LINES  | • Cost very little  
• Improve sight visibility of pedestrians and motorists when used correctly  
• Reduce potential of multiple-threat crashes | • Cost slightly more than without                                             |
| COUNTDOWN SIGNALS    | • Indicate appropriate time for pedestrians to cross  
• Provide pedestrian clearance interval | • May cause motorists to speed through intersections                           |
| CURB EXTENSIONS      | • Shorten pedestrian crossing  
• Provide traffic calming  
• Improve sight visibility for pedestrians and motorists  
• Provide additional space for landscaping and street furniture  
• Are placed where on-street parking is present (does not take away existing parking) | • Are costly, especially where drainage needs to be relocated  
• Restrict right-turn movements                                                                 |
<table>
<thead>
<tr>
<th>ADVANTAGES</th>
<th>DISADVANTAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Curb Ramps</strong></td>
<td>• May require modifications to street corners and crosswalk locations to accommodate curb ramps</td>
</tr>
<tr>
<td>Comply with ADA when designed correctly, improve pedestrian accessibility, particularly for those in wheelchairs, with strollers, and for children crossing the street</td>
<td>• Can be challenging at intersections with larger vehicles</td>
</tr>
<tr>
<td>Slow turning vehicles by making angles more acute</td>
<td>• Require maintenance if lights are broken</td>
</tr>
<tr>
<td>Shown pedestrian crossing distances</td>
<td>• Can be expensive</td>
</tr>
<tr>
<td>Improve sight visibility</td>
<td>• Potentially impact roadways, including lane narrowing and restricted turning</td>
</tr>
<tr>
<td>• Provide space for landscaping and beautification</td>
<td>• Require irrigation, drainage and maintenance</td>
</tr>
<tr>
<td>• May be challenging at intersections with larger vehicles</td>
<td>• May constrain vehicular turning movements</td>
</tr>
<tr>
<td>• Comply with ADA when designed correctly</td>
<td>• Can be challenging at intersections with larger vehicles</td>
</tr>
<tr>
<td>• Improve pedestrian accessibility for those in wheelchairs, with strollers, and for children crossing the street</td>
<td>• May require modifications to street corners and crosswalk locations to accommodate curb ramps</td>
</tr>
<tr>
<td>• Slow turning vehicles by making angles more acute</td>
<td>• Can be expensive</td>
</tr>
<tr>
<td>• Shown pedestrian crossing distances</td>
<td>• Potentially impact roadways, including lane narrowing and restricted turning</td>
</tr>
<tr>
<td>• Improve sight visibility</td>
<td>• Require irrigation, drainage and maintenance</td>
</tr>
<tr>
<td>• • Provide space for landscaping and beautification</td>
<td>• • May constrain vehicular turning movements</td>
</tr>
<tr>
<td>• • May be challenging at intersections with larger vehicles</td>
<td>• • Can be challenging at intersections with larger vehicles</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INTERSECTION GEOMETRY MODIFICATIONS</th>
<th>LED-FLASHING LIGHTS ON STOP SIGNS</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Stop Signs</strong></td>
<td>• Improve motorists compliance with stop signs</td>
</tr>
<tr>
<td>• Enhance visibility and recognition of regulatory and warning signs to drivers, especially under low-light or low-visibility conditions</td>
<td>• Enhance safety of all roadway users, particularly pedestrians</td>
</tr>
<tr>
<td>• Enhance commercial districts</td>
<td>• Enhance commercial districts</td>
</tr>
<tr>
<td>• Enhance nighttime personal safety</td>
<td>• Enhance nighttime personal safety</td>
</tr>
<tr>
<td>• • Separate traffic flows</td>
<td>• • Provide space for landscaping and beautification</td>
</tr>
<tr>
<td>• • Slow traffic</td>
<td>• • Provide space for landscaping and beautification</td>
</tr>
<tr>
<td>• • Break crossings into shorter segments</td>
<td>• • Provide refuge if crossing time is insufficient</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIGHTING</th>
<th>MEDIAN NOSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Enhance safety of all roadway users, particularly pedestrians</td>
<td>• • Provide refuge if crossing time is insufficient</td>
</tr>
<tr>
<td>• Enhance commercial districts</td>
<td>• • Provide space for landscaping and beautification</td>
</tr>
<tr>
<td>• Enhance nighttime personal safety</td>
<td>• • Provide space for landscaping and beautification</td>
</tr>
<tr>
<td>• • Separate traffic flows</td>
<td>• • Provide refuge if crossing time is insufficient</td>
</tr>
<tr>
<td>• • Slow traffic</td>
<td>• • Provide space for landscaping and beautification</td>
</tr>
<tr>
<td>• • Break crossings into shorter segments</td>
<td>• • Provide refuge if crossing time is insufficient</td>
</tr>
<tr>
<td>• • Provide space for landscaping and beautification</td>
<td>• • Provide space for landscaping and beautification</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAFE ROUTES TO SCHOOL DEVICES REFERENCE</th>
<th>MEDIAN NOSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Allow pedestrians to cross one direction of traffic at a time</td>
<td>• • Provide refuge if crossing time is insufficient</td>
</tr>
<tr>
<td>• Provide refuge if crossing time is insufficient</td>
<td>• • Provide space for landscaping and beautification</td>
</tr>
<tr>
<td>• Slow turning vehicles</td>
<td>• • Provide refuge if crossing time is insufficient</td>
</tr>
<tr>
<td>• Provide refuge if crossing time is insufficient</td>
<td>• • Provide space for landscaping and beautification</td>
</tr>
<tr>
<td>• Slow turning vehicles</td>
<td>• • Provide refuge if crossing time is insufficient</td>
</tr>
<tr>
<td>• Provide refuge if crossing time is insufficient</td>
<td>• • Provide space for landscaping and beautification</td>
</tr>
<tr>
<td>• Slow turning vehicles</td>
<td>• • Provide refuge if crossing time is insufficient</td>
</tr>
<tr>
<td>• Provide refuge if crossing time is insufficient</td>
<td>• • Provide space for landscaping and beautification</td>
</tr>
<tr>
<td>• Slow turning vehicles</td>
<td>• • Provide refuge if crossing time is insufficient</td>
</tr>
<tr>
<td>• Provide refuge if crossing time is insufficient</td>
<td>• • Provide space for landscaping and beautification</td>
</tr>
<tr>
<td>• Slow turning vehicles</td>
<td>• • Provide refuge if crossing time is insufficient</td>
</tr>
<tr>
<td>• Provide refuge if crossing time is insufficient</td>
<td>• • Provide space for landscaping and beautification</td>
</tr>
<tr>
<td>• Slow turning vehicles</td>
<td>• • Provide refuge if crossing time is insufficient</td>
</tr>
<tr>
<td>• Provide refuge if crossing time is insufficient</td>
<td>• • Provide space for landscaping and beautification</td>
</tr>
<tr>
<td>• Slow turning vehicles</td>
<td>• • Provide refuge if crossing time is insufficient</td>
</tr>
<tr>
<td>• Provide refuge if crossing time is insufficient</td>
<td>• • Provide space for landscaping and beautification</td>
</tr>
<tr>
<td>• Slow turning vehicles</td>
<td>• • Provide refuge if crossing time is insufficient</td>
</tr>
<tr>
<td>• Provide refuge if crossing time is insufficient</td>
<td>• • Provide space for landscaping and beautification</td>
</tr>
<tr>
<td>• Slow turning vehicles</td>
<td>• • Provide refuge if crossing time is insufficient</td>
</tr>
<tr>
<td>• Provide refuge if crossing time is insufficient</td>
<td>• • Provide space for landscaping and beautification</td>
</tr>
<tr>
<td>• Slow turning vehicles</td>
<td>• • Provide refuge if crossing time is insufficient</td>
</tr>
<tr>
<td>• Provide refuge if crossing time is insufficient</td>
<td>• • Provide space for landscaping and beautification</td>
</tr>
<tr>
<td>• Slow turning vehicles</td>
<td>• • Provide refuge if crossing time is insufficient</td>
</tr>
<tr>
<td>• Provide refuge if crossing time is insufficient</td>
<td>• • Provide space for landscaping and beautification</td>
</tr>
<tr>
<td>• Slow turning vehicles</td>
<td>• • Provide refuge if crossing time is insufficient</td>
</tr>
<tr>
<td>• Provide refuge if crossing time is insufficient</td>
<td>• • Provide space for landscaping and beautification</td>
</tr>
<tr>
<td>• Slow turning vehicles</td>
<td>• • Provide refuge if crossing time is insufficient</td>
</tr>
<tr>
<td>• Provide refuge if crossing time is insufficient</td>
<td>• • Provide space for landscaping and beautification</td>
</tr>
<tr>
<td>• Slow turning vehicles</td>
<td>• • Provide refuge if crossing time is insufficient</td>
</tr>
<tr>
<td>• Provide refuge if crossing time is insufficient</td>
<td>• • Provide space for landscaping and beautification</td>
</tr>
<tr>
<td>• Slow turning vehicles</td>
<td>• • Provide refuge if crossing time is insufficient</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>ADVANTAGES</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>MIDBLOCK CROSSINGS</td>
<td>• Bring both sides of the street closer for pedestrians&lt;br&gt;• Enhance visibility of pedestrians&lt;br&gt;• Inform drivers to expect pedestrians, and directs pedestrians to cross at specified locations&lt;br&gt;• Can be designed safer for pedestrians than intersection crossings because of fewer potential conflicts with vehicles</td>
</tr>
<tr>
<td>NEIGHBORHOOD TRAFFIC CIRCLES</td>
<td>• Reduce bicycle and vehicular conflicts&lt;br&gt;• Calm traffic in all directions&lt;br&gt;• Can replace stop signs</td>
</tr>
<tr>
<td>PEDESTRIAN CROSSING ISLANDS</td>
<td>• Allow pedestrians to cross one direction of traffic at a time&lt;br&gt;• Slow vehicles&lt;br&gt;• Provide refuge if crossing time is insufficient</td>
</tr>
<tr>
<td>PEDESTRIAN HYBRID BEACONS</td>
<td>• Can be used at locations that do not meet traffic signal warrants&lt;br&gt;• Effective safety measure and warning device at uncontrolled locations&lt;br&gt;• Less costly than traffic signals</td>
</tr>
<tr>
<td>PEDESTRIAN-ACTIVATED PUSHPBUTTONS</td>
<td>• Provide for smoother traffic flow if there are few pedestrians&lt;br&gt;• Do not require providing a walk signal for every cycle</td>
</tr>
</tbody>
</table>
## SAFE ROUTES TO SCHOOL DEVICES REFERENCE MATRIX

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>ADVANTAGES</th>
<th>DISADVANTAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAISED CROSSWALKS</td>
<td>• Increase visibility of pedestrian, especially to motorists in large vehicles</td>
<td>• Present potential drainage challenges</td>
</tr>
<tr>
<td></td>
<td>• Calm traffic</td>
<td>• Are more costly than basic crosswalks</td>
</tr>
<tr>
<td></td>
<td>• Provide continuous level for pedestrians</td>
<td>• Noise concerns if located near residences</td>
</tr>
<tr>
<td>RECTANGULAR RAPID-FLASH BEACONS</td>
<td>• Increase motorist compliance to yield to pedestrians crossing at uncontrolled marked locations</td>
<td>• Require pedestrians to push the push button to be effective</td>
</tr>
<tr>
<td></td>
<td>• Provide additional visibility to crosswalks</td>
<td>• More costly than without</td>
</tr>
<tr>
<td></td>
<td>• Are visible at night and during the</td>
<td></td>
</tr>
<tr>
<td>REDUCED CURB RADIUS</td>
<td>• Slows vehicular turns</td>
<td>• Decreases speed for right-turning vehicles</td>
</tr>
<tr>
<td></td>
<td>• Reduces pedestrian crossing distances and crossing times</td>
<td>• Can be challenging at intersections with large design vehicles</td>
</tr>
<tr>
<td></td>
<td>• Provides better geometry for installing perpendicular curb ramps</td>
<td></td>
</tr>
<tr>
<td>REMOVABLE PYLONS</td>
<td>• Provide a physical buffer from the travel lanes to increase comfort for pedestrians and bicyclists</td>
<td>• Do not form a full barrier to prevent vehicles from crossing</td>
</tr>
<tr>
<td></td>
<td>• Narrow the streets to slow driver speeds</td>
<td>• Can be damaged if hit, would require additional maintenance cost to replace</td>
</tr>
<tr>
<td></td>
<td>• Provide a lower-cost solution than a curb extension</td>
<td></td>
</tr>
<tr>
<td>RIGHT-TURN CHANNELIZATION ISLANDS</td>
<td>• Allow motorists and pedestrians to judge the right turn/pedestrian conflict separately</td>
<td>• Where the slip lane is unsignalized, can create conflicts with crossing pedestrians</td>
</tr>
<tr>
<td></td>
<td>• Reduce pedestrian crossing distances</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Improve signal timing for all users</td>
<td></td>
</tr>
</tbody>
</table>
## Safe Routes to School Devices Reference Matrix

<table>
<thead>
<tr>
<th>Description</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| **Roundabouts** | • Improve safety and reduce conflicts in all forms of crashes and crash severity  
• Shorten traffic queues  
• Allow approximately 30% more vehicle capacity than signals (allowing possible reduction in number of lanes and roadway width)  
• Break up the pedestrian crossings into short segments  
• Slow traffic | • Require space and grade considerations  
• Are costly  
• Require irrigation, drainage and maintenance if landscaped |
| **Rumble Bars** | • Provide visual and aural cues to alert motorists to slow down and pay attention to changes in the roadway  
• Delineate and create awareness of a pedestrian crosswalk | • Noise concerns if located near residences |
| **Scramble Phases** | • Reduce pedestrian delay for those crossing both directions  
• Reduce pedestrian-vehicle conflicts by providing an all-pedestrian crossing phase | • Increase average waiting times for motorists and pedestrians crossing just one direction |
| **Signs** | • Provide information and warning to motorists  
• Regulatory signs require certain driver actions and can be enforced  
• Are inexpensive to install | • May not be effective enough to calm traffic  
• Need to be combined with other treatments to be effective for pedestrian crossings |
| **Speed Feedback Signs** | • Heighten awareness of speed limits  
• Can be adjusted to lower speed limit during school crossing times  
• Are moderately costly but highly effective in traffic calming | • Require power (DC or solar) |